These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Chai L; Li Y; Chen S; Perl A; Zhao F; Ma H Plant Sci; 2014 Dec; 229():215-224. PubMed ID: 25443848 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the transcriptional complexity of compactness in sistan grape cluster. Shiri Y; Solouki M; Ebrahimie E; Emamjomeh A; Zahiri J Plant Sci; 2018 May; 270():198-208. PubMed ID: 29576073 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Wang Z; Zhao F; Zhao X; Ge H; Chai L; Chen S; Perl A; Ma H Proteomics; 2012 Jan; 12(1):86-94. PubMed ID: 22095673 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional Analysis of the Early Ripening of 'Kyoho' Grape in Response to the Treatment of Riboflavin. Wang ZG; Guo LL; Ji XR; Yu YH; Zhang GH; Guo DL Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31284601 [TBL] [Abstract][Full Text] [Related]
7. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. Cheng C; Jiao C; Singer SD; Gao M; Xu X; Zhou Y; Li Z; Fei Z; Wang Y; Wang X BMC Genomics; 2015 Feb; 16(1):128. PubMed ID: 25888129 [TBL] [Abstract][Full Text] [Related]
8. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. Zhang W; Abdelrahman M; Jiu S; Guan L; Han J; Zheng T; Jia H; Song C; Fang J; Wang C BMC Plant Biol; 2019 Mar; 19(1):111. PubMed ID: 30898085 [TBL] [Abstract][Full Text] [Related]
9. Regulatory mechanism of GA Li WF; Zhou Q; Ma ZH; Zuo CW; Chu MY; Mao J; Chen BH Plant Physiol Biochem; 2024 May; 210():108543. PubMed ID: 38554534 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Ma Q; Yang J Gene; 2019 Jan; 680():84-96. PubMed ID: 30257181 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and characterization of gibberellin metabolic and signal transduction (GA MST) pathway mediating seed and berry development (SBD) in grape (Vitis vinifera L.). Wang W; Bai Y; Koilkonda P; Guan L; Zhuge Y; Wang X; Liu Z; Jia H; Wang C; Fang J BMC Plant Biol; 2020 Aug; 20(1):384. PubMed ID: 32825825 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843 [TBL] [Abstract][Full Text] [Related]
13. Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. Khalil-Ur-Rehman M; Sun L; Li CX; Faheem M; Wang W; Tao JM BMC Plant Biol; 2017 Jan; 17(1):18. PubMed ID: 28103799 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Montazerinezhad S; Solouki M; Emamjomeh A; Kavousi K; Taheri A; Shiri Y Gene; 2024 Feb; 896():148030. PubMed ID: 38008270 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic study of pedicels from GA Meneses M; García-Rojas M; Muñoz-Espinoza C; Carrasco-Valenzuela T; Defilippi B; González-Agüero M; Meneses C; Infante R; Hinrichsen P BMC Plant Biol; 2020 Feb; 20(1):66. PubMed ID: 32041534 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profiling of 'Kyoho' grape at different stages of berry development following 5-azaC treatment. Guo DL; Li Q; Ji XR; Wang ZG; Yu YH BMC Genomics; 2019 Nov; 20(1):825. PubMed ID: 31703618 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. Muñoz-Espinoza C; Di Genova A; Correa J; Silva R; Maass A; González-Agüero M; Orellana A; Hinrichsen P BMC Plant Biol; 2016 Apr; 16():104. PubMed ID: 27118480 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. Zombardo A; Crosatti C; Bagnaresi P; Bassolino L; Reshef N; Puccioni S; Faccioli P; Tafuri A; Delledonne M; Fait A; Storchi P; Cattivelli L; Mica E BMC Genomics; 2020 Jul; 21(1):468. PubMed ID: 32641089 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic Analyses of Root Restriction Effects on Phytohormone Content and Signal Transduction during Grape Berry Development and Ripening. Leng F; Cao J; Wang S; Jiang L; Li X; Sun C Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30082597 [TBL] [Abstract][Full Text] [Related]
20. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Dal Santo S; Tucker MR; Tan HT; Burbidge CA; Fasoli M; Böttcher C; Boss PK; Pezzotti M; Davies C Plant Mol Biol; 2020 May; 103(1-2):91-111. PubMed ID: 32043226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]