These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31136969)
1. Identification of salt-tolerant cowpea genotypes using ISSR markers and proteome analysis. Mini ML; Sathya M; Essa MM; Al-Sadi AM; Jayachandran KS; Anusuyadevi M Front Biosci (Elite Ed); 2019 Jun; 11(1):130-149. PubMed ID: 31136969 [TBL] [Abstract][Full Text] [Related]
2. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Ravelombola W; Shi A; Weng Y; Mou B; Motes D; Clark J; Chen P; Srivastava V; Qin J; Dong L; Yang W; Bhattarai G; Sugihara Y Theor Appl Genet; 2018 Jan; 131(1):79-91. PubMed ID: 28948303 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. de Abreu CE; Araújo Gdos S; Monteiro-Moreira AC; Costa JH; Leite Hde B; Moreno FB; Prisco JT; Gomes-Filho E Plant Cell Rep; 2014 Aug; 33(8):1289-306. PubMed ID: 24770441 [TBL] [Abstract][Full Text] [Related]
4. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage. Gogile A; Andargie M; Muthuswamy M Pak J Biol Sci; 2013 Jul; 16(14):671-9. PubMed ID: 24505992 [TBL] [Abstract][Full Text] [Related]
5. Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype. Hakeem KR; Khan F; Chandna R; Siddiqui TO; Iqbal M Appl Biochem Biotechnol; 2012 Dec; 168(8):2309-29. PubMed ID: 23090685 [TBL] [Abstract][Full Text] [Related]
6. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H Chatterjee P; Samaddar S; Niinemets Ü; Sa TM Microbiol Res; 2018 Oct; 215():89-101. PubMed ID: 30172313 [TBL] [Abstract][Full Text] [Related]
7. Evaluating stress responses in cowpea under drought stress. Carvalho M; Castro I; Moutinho-Pereira J; Correia C; Egea-Cortines M; Matos M; Rosa E; Carnide V; Lino-Neto T J Plant Physiol; 2019 Oct; 241():153001. PubMed ID: 31415937 [TBL] [Abstract][Full Text] [Related]
8. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Ghaffari A; Gharechahi J; Nakhoda B; Salekdeh GH J Plant Physiol; 2014 Jan; 171(1):31-44. PubMed ID: 24094368 [TBL] [Abstract][Full Text] [Related]
9. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Olorunwa OJ; Adhikari B; Shi A; Barickman TC Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306 [TBL] [Abstract][Full Text] [Related]
10. Genetic Architecture of Salt Tolerance in Cowpea ( Ravelombola W; Dong L; Barickman TC; Xiong H; Manley A; Cason J; Pham H; Zia B; Mou B; Shi A Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894961 [TBL] [Abstract][Full Text] [Related]
11. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781 [TBL] [Abstract][Full Text] [Related]
12. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Lakra N; Kaur C; Anwar K; Singla-Pareek SL; Pareek A Plant Cell Environ; 2018 May; 41(5):947-969. PubMed ID: 28337760 [TBL] [Abstract][Full Text] [Related]
13. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Witzel K; Weidner A; Surabhi GK; Börner A; Mock HP J Exp Bot; 2009; 60(12):3545-57. PubMed ID: 19671579 [TBL] [Abstract][Full Text] [Related]
14. Genetic architecture of salt tolerance in a Multi-Parent Advanced Generation Inter-Cross (MAGIC) cowpea population. Ravelombola W; Shi A; Huynh BL; Qin J; Xiong H; Manley A; Dong L; Olaoye D; Bhattarai G; Zia B; Alshaya H; Alatawi I BMC Genomics; 2022 Feb; 23(1):100. PubMed ID: 35123403 [TBL] [Abstract][Full Text] [Related]
15. Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon. Ngompe Deffo T; Kouam EB; Mandou MS; Bara RA; Chotangui AH; Souleymanou A; Beyegue Djonko H; Tankou CM PLoS One; 2024; 19(6):e0304674. PubMed ID: 38941312 [TBL] [Abstract][Full Text] [Related]
16. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner. Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of salt-tolerance metabolic pathways in contrasting rice genotypes and their segregating progenies. Mishra P; Mishra V; Takabe T; Rai V; Singh NK Plant Cell Rep; 2016 Jun; 35(6):1273-86. PubMed ID: 26993328 [TBL] [Abstract][Full Text] [Related]
18. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Siddiqui MN; Mostofa MG; Akter MM; Srivastava AK; Sayed MA; Hasan MS; Tran LP Chemosphere; 2017 Nov; 187():385-394. PubMed ID: 28858718 [TBL] [Abstract][Full Text] [Related]
19. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea. Pawłowicz I; Waśkiewicz A; Perlikowski D; Rapacz M; Ratajczak D; Kosmala A Photosynth Res; 2018 Sep; 137(3):475-492. PubMed ID: 29881986 [TBL] [Abstract][Full Text] [Related]
20. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. Wang Y; Stevanato P; Lv C; Li R; Geng G J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]