These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31137211)

  • 1. Comparative study of SARIMA and NARX models in predicting the incidence of schistosomiasis in China.
    Yu XY; Chen Z; Qi LX
    Math Biosci Eng; 2019 Mar; 16(4):2266-2276. PubMed ID: 31137211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
    Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonality and trend prediction of scarlet fever incidence in mainland China from 2004 to 2018 using a hybrid SARIMA-NARX model.
    Wang Y; Xu C; Wang Z; Yuan J
    PeerJ; 2019; 7():e6165. PubMed ID: 30671295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-series analysis of tuberculosis from 2005 to 2017 in China.
    Wang H; Tian CW; Wang WM; Luo XM
    Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and forecasting of syphilis trends in mainland China based on hybrid time series models.
    Wang ZD; Yang CX; Zhang SK; Wang YB; Xu Z; Feng ZJ
    Epidemiol Infect; 2024 May; 152():e93. PubMed ID: 38800855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China.
    Yan W; Xu Y; Yang X; Zhou Y
    Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid model for predicting the prevalence of schistosomiasis in humans of Qianjiang City, China.
    Zhou L; Yu L; Wang Y; Lu Z; Tian L; Tan L; Shi Y; Nie S; Liu L
    PLoS One; 2014; 9(8):e104875. PubMed ID: 25119882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020.
    Zenia S; L'Hadj M; Selmane S
    J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
    Zhou L; Xia J; Yu L; Wang Y; Shi Y; Cai S; Nie S
    Int J Environ Res Public Health; 2016 Mar; 13(4):355. PubMed ID: 27023573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Seasonal Influenza Based on SARIMA Model, in Mainland China from 2005 to 2018.
    Cong J; Ren M; Xie S; Wang P
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31783697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid seasonal prediction model for tuberculosis incidence in China.
    Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z
    BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model.
    Zhang X; Pang Y; Cui M; Stallones L; Xiang H
    Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China.
    Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H
    PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
    Kuan MM
    PeerJ; 2022; 10():e13117. PubMed ID: 36164599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of four time series methods in forecasting typhoid fever incidence in China.
    Zhang X; Liu Y; Yang M; Zhang T; Young AA; Li X
    PLoS One; 2013; 8(5):e63116. PubMed ID: 23650546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of two methods to predict the incidence of hepatitis B in Guangxi, China.
    Zheng Y; Zhang L; Zhu X; Guo G
    PLoS One; 2020; 15(6):e0234660. PubMed ID: 32579598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time series analysis of rubella incidence in Chongqing, China using SARIMA and BPNN mathematical models.
    Chen Q; Zhao H; Qiu H; Wang Q; Zeng D; Ye M
    J Infect Dev Ctries; 2022 Aug; 16(8):1343-1350. PubMed ID: 36099379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.