These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 31137234)

  • 1. The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium.
    Xiong JJ; Li X; Wang H
    Math Biosci Eng; 2019 Mar; 16(4):2717-2737. PubMed ID: 31137234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence in Stochastic Lotka-Volterra Food Chains with Intraspecific Competition.
    Hening A; Nguyen DH
    Bull Math Biol; 2018 Oct; 80(10):2527-2560. PubMed ID: 30109461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic Lotka-Volterra food chains.
    Hening A; Nguyen DH
    J Math Biol; 2018 Jul; 77(1):135-163. PubMed ID: 29150714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic analysis of the Lotka-Volterra model for ecosystems.
    Cai GQ; Lin YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model.
    Reichenbach T; Mobilia M; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051907. PubMed ID: 17279939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The competitive exclusion principle in stochastic environments.
    Hening A; Nguyen DH
    J Math Biol; 2020 Apr; 80(5):1323-1351. PubMed ID: 31919652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymptotic properties of the Lotka-Volterra competition and mutualism model under stochastic perturbations.
    Shaikhet L; Korobeinikov A
    Math Med Biol; 2024 Mar; 41(1):19-34. PubMed ID: 38289701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems.
    Tang Y; Yuan R; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012708. PubMed ID: 23410360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence and extinction for stochastic ecological models with internal and external variables.
    Benaïm M; Schreiber SJ
    J Math Biol; 2019 Jul; 79(1):393-431. PubMed ID: 31053893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extinction dynamics of Lotka-Volterra ecosystems on evolving networks.
    Coppex F; Droz M; Lipowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061901. PubMed ID: 15244611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When the exception becomes the rule: the disappearance of limiting similarity in the Lotka-Volterra model.
    Barabás G; Meszéna G
    J Theor Biol; 2009 May; 258(1):89-94. PubMed ID: 19171156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invasion dynamics of competing species with stage-structure.
    Bewick S; Wang G; Younes H; Li B; Fagan WF
    J Theor Biol; 2017 Dec; 435():12-21. PubMed ID: 28782553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demographic stochasticity alters the outcome of exploitation competition.
    Okuyama T
    J Theor Biol; 2015 Jan; 365():347-51. PubMed ID: 25451527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of two competing species in the presence of Lévy noise sources.
    La Cognata A; Valenti D; Dubkov AA; Spagnolo B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011121. PubMed ID: 20866579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing uncertainty to approximate mechanistic models of interspecific interactions.
    Clark AT; Neuhauser C
    Theor Popul Biol; 2018 Sep; 123():35-44. PubMed ID: 29859932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding all multiple stable fixpoints of n-species Lotka-Volterra competition models.
    Lischke H; Löffler TJ
    Theor Popul Biol; 2017 Jun; 115():24-34. PubMed ID: 28232111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A COEVOLUTIONARY ISOMORPHISM APPLIED TO LABORATORY STUDIES OF COMPETITION.
    Pease CM
    Evolution; 1985 Mar; 39(2):444-450. PubMed ID: 28564209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impacts of dispersal on the competition outcome of multi-patch competition models.
    Mai A; Sun GW; Wang L
    Math Biosci Eng; 2019 Mar; 16(4):2697-2716. PubMed ID: 31137233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity, habitat area, resource growth rate and interference competition.
    Kuang Y; Fagan WF; Loladze I
    Bull Math Biol; 2003 May; 65(3):497-518. PubMed ID: 12749536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Competitive mechanism of non - predator - prey metapopulation system based on competition and dispersal ability].
    Liang R; Lin Z
    Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):987-91. PubMed ID: 16964928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.