These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31137249)

  • 1. Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model.
    Clément F; Laroche B; Robin F
    Math Biosci Eng; 2019 Apr; 16(4):3018-3046. PubMed ID: 31137249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Inverse Problem Solution Scheme for Solving the Optimization Problem of Drug-Controlled Release from Multilaminated Devices.
    Zhang X
    Comput Math Methods Med; 2020; 2020():8380691. PubMed ID: 32802154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From short-range repulsion to Hele-Shaw problem in a model of tumor growth.
    Motsch S; Peurichard D
    J Math Biol; 2018 Jan; 76(1-2):205-234. PubMed ID: 28573465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age Structure Can Account for Delayed Logistic Proliferation of Scratch Assays.
    Ponce Bobadilla AV; Carraro T; Byrne HM; Maini PK; Alarcón T
    Bull Math Biol; 2019 Jul; 81(7):2706-2724. PubMed ID: 31201661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear compartmental modeling to monitor ovarian follicle population dynamics on the whole lifespan.
    Ballif G; Clément F; Yvinec R
    J Math Biol; 2024 Jun; 89(1):9. PubMed ID: 38844702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling cell population dynamics.
    Charlebois DA; Balázsi G
    In Silico Biol; 2019; 13(1-2):21-39. PubMed ID: 30562900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inverse dynamics problem of neuromuscular control.
    Hatze H
    Biol Cybern; 2000 Feb; 82(2):133-41. PubMed ID: 10664100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of parameters in systems biology.
    Abdulla UG; Poteau R
    Math Biosci; 2018 Nov; 305():133-145. PubMed ID: 30217694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal harvesting for a predator-prey agent-based model using difference equations.
    Oremland M; Laubenbacher R
    Bull Math Biol; 2015 Mar; 77(3):434-59. PubMed ID: 25559457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On models of physiologically structured populations and their reduction to ordinary differential equations.
    Diekmann O; Gyllenberg M; Metz JAJ
    J Math Biol; 2020 Jan; 80(1-2):189-204. PubMed ID: 31563973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random search algorithm for solving the nonlinear Fredholm integral equations of the second kind.
    Hong Z; Yan Z; Yan J
    PLoS One; 2014; 9(7):e103068. PubMed ID: 25072373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic theory of age-structured stochastic birth-death processes.
    Greenman CD; Chou T
    Phys Rev E; 2016 Jan; 93(1):012112. PubMed ID: 26871029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical rate function determination in partial differential equations modeling cell population dynamics.
    Groh A; Kohr H; Louis AK
    J Math Biol; 2017 Feb; 74(3):533-565. PubMed ID: 27295108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free boundary problem for cell protrusion formations: theoretical and numerical aspects.
    Gallinato O; Ohta M; Poignard C; Suzuki T
    J Math Biol; 2017 Aug; 75(2):263-307. PubMed ID: 27921151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the stability of separable solutions of a sexual age-structured population dynamics model.
    Skakauskas V
    Math Biosci; 2004 Sep; 191(1):41-67. PubMed ID: 15312743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiated cell behavior: a multiscale approach using measure theory.
    Colombi A; Scianna M; Tosin A
    J Math Biol; 2015 Nov; 71(5):1049-79. PubMed ID: 25358500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Moment Description of Birth-Death-Movement Processes Incorporating the Effects of Crowding and Obstacles.
    Surendran A; Plank MJ; Simpson MJ
    Bull Math Biol; 2018 Nov; 80(11):2828-2855. PubMed ID: 30097916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor heterogeneity in optical biosensors.
    Evans RM; Edwards DA
    J Math Biol; 2018 Mar; 76(4):795-816. PubMed ID: 28707032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tutorial Introduction to Inverse Problems in Magnetic Resonance.
    Spencer RG; Bi C
    NMR Biomed; 2020 Dec; 33(12):e4315. PubMed ID: 32803775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.