BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31137420)

  • 1. Influence of Plasmids on Catalase and Superoxide Dismutase Activities in Listeria monocytogenes.
    Isom LL; Ahmed AH; Martin SE
    J Food Prot; 1995 Sep; 58(9):955-959. PubMed ID: 31137420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalase and superoxide dismutase activities after heat injury of Listeria monocytogenes.
    Dallmier AW; Martin SE
    Appl Environ Microbiol; 1988 Feb; 54(2):581-2. PubMed ID: 3128167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbicidal activities of human polymorphonuclear neutrophils.
    Beaman BL; Black CM; Doughty F; Beaman L
    Infect Immun; 1985 Jan; 47(1):135-41. PubMed ID: 3880721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between superoxide dismutase and pathogenic mechanisms of Listeria monocytogenes.
    Welch DF; Sword CP; Brehm S; Dusanic D
    Infect Immun; 1979 Mar; 23(3):863-72. PubMed ID: 110685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride.
    Dallmier AW; Martin SE
    Appl Environ Microbiol; 1990 Sep; 56(9):2807-10. PubMed ID: 2125816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of iron and selenium on the production of catalase, superoxide dismutase, and listeriolysin O in Listeria monocytogenes.
    Fisher CW; Martin SE
    J Food Prot; 1999 Oct; 62(10):1206-9. PubMed ID: 10528728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function and distribution of the conjugative plasmid pLM1686 in foodborne Listeria monocytogenes in China.
    Mao P; Wang Y; Gan L; Sun H; Wang Y; Li L; Ji S; Song Z; Jiang H; Ye C
    Int J Food Microbiol; 2021 Aug; 352():109261. PubMed ID: 34116256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Large-Scale Sequencing-Based Survey of Plasmids in
    Schmitz-Esser S; Anast JM; Cortes BW
    Front Microbiol; 2021; 12():653155. PubMed ID: 33776982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmids in Listeria monocytogenes in relation to cadmium resistance.
    Lebrun M; Loulergue J; Chaslus-Dancla E; Audurier A
    Appl Environ Microbiol; 1992 Sep; 58(9):3183-6. PubMed ID: 1444434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmids contribute to food processing environment-associated stress survival in three Listeria monocytogenes ST121, ST8, and ST5 strains.
    Naditz AL; Dzieciol M; Wagner M; Schmitz-Esser S
    Int J Food Microbiol; 2019 Jun; 299():39-46. PubMed ID: 30953994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin.
    Xu D; Nie Q; Wang W; Shi L; Yan H
    Int J Food Microbiol; 2016 Jan; 217():117-22. PubMed ID: 26513251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalase, Superoxide Dismutase and Listeriolysin O Production by Listeria monocytogenes in Broth Containing Acetic and Hydrochloric Acids.
    Dimmig LK; Myers ER; Martin SE
    J Food Prot; 1994 Jul; 57(7):626-628. PubMed ID: 31121703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in
    Pöntinen A; Aalto-Araneda M; Lindström M; Korkeala H
    mSphere; 2017; 2(6):. PubMed ID: 29104933
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative Analysis of
    Hingston P; Brenner T; Truelstrup Hansen L; Wang S
    Toxins (Basel); 2019 Jul; 11(7):. PubMed ID: 31330827
    [No Abstract]   [Full Text] [Related]  

  • 15. Heat stability of virulence-associated enzymes from Listeria monocytogenes SLCC 5764.
    Zemser RB; Martin SE
    J Food Prot; 1998 Jul; 61(7):899-902. PubMed ID: 9678177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virulence of Listeria monocytogenes Propagated in NaCl Containing Media at 4, 25 and 37°C.
    Myers ER; Martin SE
    J Food Prot; 1994 Jun; 57(6):475-478. PubMed ID: 31121652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids.
    Flamm RK; Hinrichs DJ; Thomashow MF
    Infect Immun; 1984 Apr; 44(1):157-61. PubMed ID: 6323313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of superoxide dismutase in Listeria monocytogenes.
    Vasconcelos JA; Deneer HG
    Appl Environ Microbiol; 1994 Jul; 60(7):2360-6. PubMed ID: 8074517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs.
    Anast JM; Etter AJ; Schmitz-Esser S
    Microbiologyopen; 2022 Oct; 11(5):e1315. PubMed ID: 36314750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses.
    Margolles A; de los Reyes-Gavilán CG
    Int J Food Microbiol; 1998 Feb; 39(3):231-6. PubMed ID: 9553802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.