These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 31137541)
21. Recent trends and future perspectives of thermoelectric materials and their applications. Baskaran P; Rajasekar M RSC Adv; 2024 Jul; 14(30):21706-21744. PubMed ID: 38979465 [TBL] [Abstract][Full Text] [Related]
22. Thermoelectric Converters Based on Ionic Conductors. Wu X; Gao N; Jia H; Wang Y Chem Asian J; 2021 Jan; 16(2):129-141. PubMed ID: 33289291 [TBL] [Abstract][Full Text] [Related]
23. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications. Ou C; Sangle AL; Datta A; Jing Q; Busolo T; Chalklen T; Narayan V; Kar-Narayan S ACS Appl Mater Interfaces; 2018 Jun; 10(23):19580-19587. PubMed ID: 29775276 [TBL] [Abstract][Full Text] [Related]
24. Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting. Liao Z; Zhou X; Wei G; Wang S; Gao C; Wang L ACS Appl Mater Interfaces; 2022 Sep; 14(38):43421-43430. PubMed ID: 36121696 [TBL] [Abstract][Full Text] [Related]
25. Manipulating Hetero-Nanowire Films for Flexible and Multifunctional Thermoelectric Devices. Chen C; Xu FQ; Wu Y; Li XL; Xu JL; Zhao B; He Z; Yang J; Zhang W; Liu JW Adv Mater; 2024 Jun; 36(25):e2400020. PubMed ID: 38477408 [TBL] [Abstract][Full Text] [Related]
26. Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting. Wang X; Wang H; Liu B Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961121 [TBL] [Abstract][Full Text] [Related]
27. Nanostructured Metal Tellurides and Their Heterostructures for Thermoelectric Applications-A Review. Karunanithy M; Prabhavathi G; Beevi AH; Ibraheem BHA; Kaviyarasu K; Nivetha S; Punithavelan N; Ayeshamariam A; Jayachandran M J Nanosci Nanotechnol; 2018 Oct; 18(10):6680-6707. PubMed ID: 29954484 [TBL] [Abstract][Full Text] [Related]
28. Recent Developments of n-Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. Wang J; Liu L; Wu F; Liu Z; Fan Z; Chen L; Chen Y ChemSusChem; 2022 Feb; 15(4):e202102420. PubMed ID: 34964275 [TBL] [Abstract][Full Text] [Related]
29. Hydrogel-based printing strategy for high-performance flexible thermoelectric generators. Wu B; Geng J; Lin Y; Hou C; Zhang Q; Li Y; Wang H Nanoscale; 2022 Nov; 14(45):16857-16864. PubMed ID: 36350189 [TBL] [Abstract][Full Text] [Related]
30. Highly Conductive Hydrogel Polymer Fibers toward Promising Wearable Thermoelectric Energy Harvesting. Liu J; Jia Y; Jiang Q; Jiang F; Li C; Wang X; Liu P; Liu P; Hu F; Du Y; Xu J ACS Appl Mater Interfaces; 2018 Dec; 10(50):44033-44040. PubMed ID: 30523679 [TBL] [Abstract][Full Text] [Related]
31. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Wang L; Zhang Z; Liu Y; Wang B; Fang L; Qiu J; Zhang K; Wang S Nat Commun; 2018 Sep; 9(1):3817. PubMed ID: 30232323 [TBL] [Abstract][Full Text] [Related]
32. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. Jia Y; Jiang Q; Sun H; Liu P; Hu D; Pei Y; Liu W; Crispin X; Fabiano S; Ma Y; Cao Y Adv Mater; 2021 Oct; 33(42):e2102990. PubMed ID: 34486174 [TBL] [Abstract][Full Text] [Related]
33. Organic Thermoelectric Materials as the Waste Heat Remedy. Gogoc S; Data P Molecules; 2022 Feb; 27(3):. PubMed ID: 35164278 [TBL] [Abstract][Full Text] [Related]
34. Organic Thermoelectric Materials for Wearable Electronic Devices. Xiao R; Zhou X; Zhang C; Liu X; Han S; Che C Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065999 [TBL] [Abstract][Full Text] [Related]
35. Recent Progress of Two-Dimensional Thermoelectric Materials. Li D; Gong Y; Chen Y; Lin J; Khan Q; Zhang Y; Li Y; Zhang H; Xie H Nanomicro Lett; 2020 Jan; 12(1):36. PubMed ID: 34138247 [TBL] [Abstract][Full Text] [Related]
36. Development of Perovskite-Type Materials for Thermoelectric Application. Wu T; Gao P Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895789 [TBL] [Abstract][Full Text] [Related]
37. Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS Guo Y; Dun C; Xu J; Li P; Huang W; Mu J; Hou C; Hewitt CA; Zhang Q; Li Y; Carroll DL; Wang H ACS Appl Mater Interfaces; 2018 Oct; 10(39):33316-33321. PubMed ID: 30192125 [TBL] [Abstract][Full Text] [Related]
38. Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Sanad MF; Shalan AE; Abdellatif SO; Serea ESA; Adly MS; Ahsan MA Top Curr Chem (Cham); 2020 Oct; 378(6):48. PubMed ID: 33037928 [TBL] [Abstract][Full Text] [Related]
39. Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Huo B; Guo CY Molecules; 2022 Oct; 27(20):. PubMed ID: 36296524 [TBL] [Abstract][Full Text] [Related]
40. Thermoelectric materials and applications for energy harvesting power generation. Petsagkourakis I; Tybrandt K; Crispin X; Ohkubo I; Satoh N; Mori T Sci Technol Adv Mater; 2018; 19(1):836-862. PubMed ID: 31001364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]