These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31137640)

  • 1. Sensitivity and Uncertainty Analysis of One-Dimensional Tanaka and Liang-Rogers Shape Memory Alloy Constitutive Models.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of One-Dimensional Ivshin-Pence Shape Memory Alloy Constitutive Model for Sensitivity and Uncertainty.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32214042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band.
    Li W; Shen X; Peng X
    Materials (Basel); 2014 Jan; 7(1):576-590. PubMed ID: 28788476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses.
    Hu JW
    Materials (Basel); 2014 Feb; 7(2):1122-1141. PubMed ID: 28788504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review.
    Mohammadgholipour A; Billah AM
    J Intell Mater Syst Struct; 2023 Dec; 34(20):2335-2359. PubMed ID: 37970098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials.
    Xu R; Bouby C; Zahrouni H; Ben Zineb T; Hu H; Potier-Ferry M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications.
    Exarchos DA; Dalla PT; Tragazikis IK; Dassios KG; Zafeiropoulos NE; Karabela MM; De Crescenzo C; Karatza D; Musmarra D; Chianese S; Matikas TE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
    Ashrafi MJ; Arghavani J; Naghdabadi R; Sohrabpour S
    J Mech Behav Biomed Mater; 2015 Feb; 42():292-310. PubMed ID: 25528691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on Temperature Effects on NiTi Shape Memory Alloys under Fatigue Loading.
    Lin C; Wang Z; Yang X; Zhou H
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Way Shape Memory Effect Induced by Tensile Deformation in Columnar-Grained Cu
    Yao PS; Huang HY; Su YJ; Xie JX
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.
    Takeda K; Tobushi H; Pieczyska EA
    Materials (Basel); 2012 May; 5(5):909-921. PubMed ID: 28817016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Mechanical Properties of Large Shape Memory Alloy Bars under Different Heat Treatments.
    Kang L; Qian H; Guo Y; Ye C; Li Z
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32846946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Characterization of Local Shape Memory Properties through Indentation.
    Li P; Karaca HE; Cheng YT
    Sci Rep; 2017 Nov; 7(1):14827. PubMed ID: 29093450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Consequences of Dynamically Loaded NiTi Wires under Typical Actuator Conditions in Rehabilitation and Neuroscience.
    Çakmak UD; Major Z; Fischlschweiger M
    J Funct Biomater; 2021 Jan; 12(1):. PubMed ID: 33435560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy.
    Takeda K; Matsui R; Tobushi H; Pieczyska EA
    Materials (Basel); 2014 Mar; 7(3):1912-1926. PubMed ID: 28788547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Composites.
    Annadata AR; Acevedo-Velazquez AI; Woodworth LA; Gereke T; Kaliske M; Röbenack K; Cherif C
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.
    Liu B; Dui G; Xie B; Xue L
    J Mech Behav Biomed Mater; 2014 Apr; 32():185-191. PubMed ID: 24480405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Gradient Heat Treatment on Microstructure and Properties of Cu-Al-Mn Shape Memory Alloy.
    Zhou L; Lan J; Liu J; Li X; Shi B; Zheng S
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RC Structures Strengthened by an Iron-Based Shape Memory Alloy Embedded in a Shotcrete Layer-Nonlinear Finite Element Modeling.
    Dolatabadi N; Shahverdi M; Ghassemieh M; Motavalli M
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lightweight shape-memory magnesium alloy.
    Ogawa Y; Ando D; Sutou Y; Koike J
    Science; 2016 Jul; 353(6297):368-70. PubMed ID: 27463668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.