These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31137667)

  • 41. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.
    Embrey L; Nautiyal P; Loganathan A; Idowu A; Boesl B; Agarwal A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39717-39727. PubMed ID: 29068220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilization of rubber additive on graphene for high-performance rubber composites.
    Zhong B; Luo Y; Chen W; Luo Y; Hu D; Dong H; Jia Z; Jia D
    J Colloid Interface Sci; 2019 Aug; 550():190-198. PubMed ID: 31071523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of π-π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene-
    Han X; Kong H; Chen T; Gao J; Zhao Y; Sang Y; Hu G
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-layer graphene oxide synergistically modified by two coupling agents and its application in reinforced natural rubber composites.
    Jiang M; Xiong Y; Xue B; Zhang Q; Wan Q; Zhao H
    RSC Adv; 2018 Aug; 8(52):29847-29854. PubMed ID: 35547282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile Exfoliation and Noncovalent Superacid Functionalization of Boron Nitride Nanosheets and Their Use for Highly Thermally Conductive and Electrically Insulating Polymer Nanocomposites.
    Morishita T; Okamoto H
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27064-27073. PubMed ID: 27599203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study on Thermal Conductivity of P-Phenylenediamine Modified Graphene/Epoxy Composites.
    Lin J; Zhou J; Guo M; Chen D; Chen G
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Thermal Conductivity of Graphene Nanoplatelet-Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation.
    Hamidinejad SM; Chu RKM; Zhao B; Park CB; Filleter T
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1225-1236. PubMed ID: 29226667
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles.
    Pourrahimi AM; Pallon LK; Liu D; Hoang TA; Gubanski S; Hedenqvist MS; Olsson RT; Gedde UW
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14824-35. PubMed ID: 27203860
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability.
    Chen J; Huang X; Sun B; Jiang P
    ACS Nano; 2019 Jan; 13(1):337-345. PubMed ID: 30566324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes.
    Sung KS; Kim SY; Oh MK; Kim N
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering.
    Díez-Pascual AM; Díez-Vicente AL
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17902-14. PubMed ID: 27383639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low interfacial contact resistance of Al-graphene composites via interface engineering.
    Hahm MG; Nam J; Choi M; Park CD; Cho B; Kazunori S; Kim YA; Kim DY; Endo M; Kim DH; Vajtai R; Ajayan PM; Song SM
    Nanotechnology; 2015 May; 26(21):215603. PubMed ID: 25944839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Graphene Oxidation on Interaction Energy and Interfacial Thermal Conductivity of Polymer Nanocomposite: A Molecular Dynamics Approach.
    Bellussi FM; Sáenz Ezquerro C; Laspalas M; Chiminelli A
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites.
    Li M; Liu J; Pan S; Zhang J; Liu Y; Liu J; Lu H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27476-27484. PubMed ID: 32432449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites.
    Zhang G; Wang F; Dai J; Huang Z
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variation of mechanical and thermal properties in sustainable graphene oxide/epoxy composites.
    Zhao H; Ding J; Yu H
    Sci Rep; 2018 Nov; 8(1):16560. PubMed ID: 30410006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity.
    Wu X; Li H; Cheng K; Qiu H; Yang J
    Nanoscale; 2019 Apr; 11(17):8219-8225. PubMed ID: 30973564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between the Microstructure and Performance of Graphene/Polyethylene Composites Investigated by Positron Annihilation Lifetime Spectroscopy.
    Han X; Chen T; Zhao Y; Gao J; Sang Y; Xiong H; Chen Z
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the Fluorination of Graphene Nanoflake on the Dispersion and Mechanical Properties of Polypropylene Nanocomposites.
    Lee MG; Lee S; Cho J; Bae S; Jho JY
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.