These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31138121)
1. Batch correction evaluation framework using a-priori gene-gene associations: applied to the GTEx dataset. Somekh J; Shen-Orr SS; Kohane IS BMC Bioinformatics; 2019 May; 20(1):268. PubMed ID: 31138121 [TBL] [Abstract][Full Text] [Related]
2. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. Behdenna A; Colange M; Haziza J; Gema A; Appé G; Azencott CA; Nordor A BMC Bioinformatics; 2023 Dec; 24(1):459. PubMed ID: 38057718 [TBL] [Abstract][Full Text] [Related]
3. Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets. Oytam Y; Sobhanmanesh F; Duesing K; Bowden JC; Osmond-McLeod M; Ross J BMC Bioinformatics; 2016 Sep; 17(1):332. PubMed ID: 27585881 [TBL] [Abstract][Full Text] [Related]
4. Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality. Sprang M; Andrade-Navarro MA; Fontaine JF BMC Bioinformatics; 2022 Jul; 23(Suppl 6):279. PubMed ID: 35836114 [TBL] [Abstract][Full Text] [Related]
5. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies. Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247 [TBL] [Abstract][Full Text] [Related]
6. Batch effect correction for genome-wide methylation data with Illumina Infinium platform. Sun Z; Chai HS; Wu Y; White WM; Donkena KV; Klein CJ; Garovic VD; Therneau TM; Kocher JP BMC Med Genomics; 2011 Dec; 4():84. PubMed ID: 22171553 [TBL] [Abstract][Full Text] [Related]
7. Practical impacts of genomic data "cleaning" on biological discovery using surrogate variable analysis. Jaffe AE; Hyde T; Kleinman J; Weinbergern DR; Chenoweth JG; McKay RD; Leek JT; Colantuoni C BMC Bioinformatics; 2015 Nov; 16():372. PubMed ID: 26545828 [TBL] [Abstract][Full Text] [Related]
8. Influence of batch effect correction methods on drug induced differential gene expression profiles. Zhou W; Koudijs KKM; Böhringer S BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848 [TBL] [Abstract][Full Text] [Related]
9. Blind estimation and correction of microarray batch effect. Varma S PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844 [TBL] [Abstract][Full Text] [Related]
10. Detecting hidden batch factors through data-adaptive adjustment for biological effects. Yi H; Raman AT; Zhang H; Allen GI; Liu Z Bioinformatics; 2018 Apr; 34(7):1141-1147. PubMed ID: 29617963 [TBL] [Abstract][Full Text] [Related]
11. MultiBaC: an R package to remove batch effects in multi-omic experiments. Ugidos M; Nueda MJ; Prats-Montalbán JM; Ferrer A; Conesa A; Tarazona S Bioinformatics; 2022 Apr; 38(9):2657-2658. PubMed ID: 35238331 [TBL] [Abstract][Full Text] [Related]
12. Identifying and correcting epigenetics measurements for systematic sources of variation. Perrier F; Novoloaca A; Ambatipudi S; Baglietto L; Ghantous A; Perduca V; Barrdahl M; Harlid S; Ong KK; Cardona A; Polidoro S; Nøst TH; Overvad K; Omichessan H; Dollé M; Bamia C; Huerta JM; Vineis P; Herceg Z; Romieu I; Ferrari P Clin Epigenetics; 2018; 10():38. PubMed ID: 29588806 [TBL] [Abstract][Full Text] [Related]
13. Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Parker HS; Leek JT; Favorov AV; Considine M; Xia X; Chavan S; Chung CH; Fertig EJ Bioinformatics; 2014 Oct; 30(19):2757-63. PubMed ID: 24907368 [TBL] [Abstract][Full Text] [Related]
14. Examining the practical limits of batch effect-correction algorithms: When should you care about batch effects? Zhou L; Chi-Hau Sue A; Bin Goh WW J Genet Genomics; 2019 Sep; 46(9):433-443. PubMed ID: 31611172 [TBL] [Abstract][Full Text] [Related]
15. An ontology-based method for assessing batch effect adjustment approaches in heterogeneous datasets. Schmidt F; List M; Cukuroglu E; Köhler S; Göke J; Schulz MH Bioinformatics; 2018 Sep; 34(17):i908-i916. PubMed ID: 30423059 [TBL] [Abstract][Full Text] [Related]
16. V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data. Lawlor N; Marquez EJ; Lee D; Ucar D Bioinformatics; 2020 Jun; 36(11):3582-3584. PubMed ID: 32119082 [TBL] [Abstract][Full Text] [Related]
17. Propensity scores as a novel method to guide sample allocation and minimize batch effects during the design of high throughput experiments. Carry PM; Vigers T; Vanderlinden LA; Keeter C; Dong F; Buckner T; Litkowski E; Yang I; Norris JM; Kechris K BMC Bioinformatics; 2023 Mar; 24(1):86. PubMed ID: 36882691 [TBL] [Abstract][Full Text] [Related]
18. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. Gysi DM; Voigt A; Fragoso TM; Almaas E; Nowick K BMC Bioinformatics; 2018 Oct; 19(1):392. PubMed ID: 30355288 [TBL] [Abstract][Full Text] [Related]
19. A Novel Statistical Method to Diagnose, Quantify and Correct Batch Effects in Genomic Studies. Nyamundanda G; Poudel P; Patil Y; Sadanandam A Sci Rep; 2017 Sep; 7(1):10849. PubMed ID: 28883548 [TBL] [Abstract][Full Text] [Related]