These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31138155)
1. Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. Couchoud M; Der C; Girodet S; Vernoud V; Prudent M; Leborgne-Castel N BMC Plant Biol; 2019 May; 19(1):221. PubMed ID: 31138155 [TBL] [Abstract][Full Text] [Related]
2. Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress. Luo SS; Sun YN; Zhou X; Zhu T; Zhu LS; Arfan M; Zou LJ; Lin HH Plant Physiol Biochem; 2016 Dec; 109():190-198. PubMed ID: 27721134 [TBL] [Abstract][Full Text] [Related]
4. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula. Lyon D; Castillejo MA; Mehmeti-Tershani V; Staudinger C; Kleemaier C; Wienkoop S Mol Cell Proteomics; 2016 Jun; 15(6):1921-37. PubMed ID: 27001437 [TBL] [Abstract][Full Text] [Related]
5. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Larrainzar E; Molenaar JA; Wienkoop S; Gil-Quintana E; Alibert B; Limami AM; Arrese-Igor C; González EM Plant Cell Environ; 2014 Sep; 37(9):2051-63. PubMed ID: 24471423 [TBL] [Abstract][Full Text] [Related]
6. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Kang Y; Sakiroglu M; Krom N; Stanton-Geddes J; Wang M; Lee YC; Young ND; Udvardi M Plant Cell Environ; 2015 Oct; 38(10):1997-2011. PubMed ID: 25707512 [TBL] [Abstract][Full Text] [Related]
8. Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Garcia K; Ané JM Plant Signal Behav; 2017 Apr; 12(4):e1307494. PubMed ID: 28340327 [TBL] [Abstract][Full Text] [Related]
9. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Gou J; Debnath S; Sun L; Flanagan A; Tang Y; Jiang Q; Wen J; Wang ZY Plant Biotechnol J; 2018 Apr; 16(4):951-962. PubMed ID: 28941083 [TBL] [Abstract][Full Text] [Related]
10. Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula? Gil-Quintana E; Larrainzar E; Arrese-Igor C; González EM J Exp Bot; 2013 Jan; 64(1):281-92. PubMed ID: 23175536 [TBL] [Abstract][Full Text] [Related]
11. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment. Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Zahaf O; Blanchet S; de Zélicourt A; Alunni B; Plet J; Laffont C; de Lorenzo L; Imbeaud S; Ichanté JL; Diet A; Badri M; Zabalza A; González EM; Delacroix H; Gruber V; Frugier F; Crespi M Mol Plant; 2012 Sep; 5(5):1068-81. PubMed ID: 22419822 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Vailleau F; Sartorel E; Jardinaud MF; Chardon F; Genin S; Huguet T; Gentzbittel L; Petitprez M Mol Plant Microbe Interact; 2007 Feb; 20(2):159-67. PubMed ID: 17313167 [TBL] [Abstract][Full Text] [Related]
14. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Li X; Liu Q; Feng H; Deng J; Zhang R; Wen J; Dong J; Wang T Autophagy; 2020 May; 16(5):862-877. PubMed ID: 31362589 [TBL] [Abstract][Full Text] [Related]
15. Responses of flavonoids to solar UV radiation and gradual soil drying in two Medicago truncatula accessions. Rai N; Neugart S; Schröter D; Lindfors AV; Aphalo PJ Photochem Photobiol Sci; 2023 Jul; 22(7):1637-1654. PubMed ID: 36995651 [TBL] [Abstract][Full Text] [Related]
16. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Yousfi N; Slama I; Ghnaya T; Savouré A; Abdelly C C R Biol; 2010 Mar; 333(3):205-13. PubMed ID: 20338538 [TBL] [Abstract][Full Text] [Related]
17. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255 [TBL] [Abstract][Full Text] [Related]
18. Strategies to Apply Water-Deficit Stress: Similarities and Disparities at the Whole Plant Metabolism Level in Castañeda V; González EM Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802151 [TBL] [Abstract][Full Text] [Related]
19. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Iyer NJ; Tang Y; Mahalingam R Plant Cell Environ; 2013 Mar; 36(3):706-20. PubMed ID: 22946485 [TBL] [Abstract][Full Text] [Related]
20. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Zhao M; Liu W; Xia X; Wang T; Zhang WH Physiol Plant; 2014 Sep; 152(1):115-29. PubMed ID: 24494928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]