These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 31138192)
1. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells. Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192 [TBL] [Abstract][Full Text] [Related]
2. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline. Hattori A; Fukami M Cytogenet Genome Res; 2020; 160(4):167-176. PubMed ID: 32396893 [TBL] [Abstract][Full Text] [Related]
3. Insight into the Molecular Basis Underlying Chromothripsis. Ostapińska K; Styka B; Lejman M Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328739 [TBL] [Abstract][Full Text] [Related]
4. The multiple de novo copy number variant (MdnCNV) phenomenon presents with peri-zygotic DNA mutational signatures and multilocus pathogenic variation. Du H; Jolly A; Grochowski CM; Yuan B; Dawood M; Jhangiani SN; Li H; Muzny D; Fatih JM; Coban-Akdemir Z; Carlin ME; Scheuerle AE; Witzl K; Posey JE; Pendleton M; Harrington E; Juul S; Hastings PJ; Bi W; Gibbs RA; Sedlazeck FJ; Lupski JR; Carvalho CMB; Liu P Genome Med; 2022 Oct; 14(1):122. PubMed ID: 36303224 [TBL] [Abstract][Full Text] [Related]
5. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization. Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018 [TBL] [Abstract][Full Text] [Related]
6. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Cleal K; Jones RE; Grimstead JW; Hendrickson EA; Baird DM Genome Res; 2019 May; 29(5):737-749. PubMed ID: 30872351 [TBL] [Abstract][Full Text] [Related]
7. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. Slamova Z; Nazaryan-Petersen L; Mehrjouy MM; Drabova J; Hancarova M; Marikova T; Novotna D; Vlckova M; Vlckova Z; Bak M; Zemanova Z; Tommerup N; Sedlacek Z Hum Mutat; 2018 May; 39(5):709-716. PubMed ID: 29405539 [TBL] [Abstract][Full Text] [Related]
9. Chromothripsis in Human Breast Cancer. Bolkestein M; Wong JKL; Thewes V; Körber V; Hlevnjak M; Elgaafary S; Schulze M; Kommoss FKF; Sinn HP; Anzeneder T; Hirsch S; Devens F; Schröter P; Höfer T; Schneeweiss A; Lichter P; Zapatka M; Ernst A Cancer Res; 2020 Nov; 80(22):4918-4931. PubMed ID: 32973084 [TBL] [Abstract][Full Text] [Related]
10. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919 [TBL] [Abstract][Full Text] [Related]
12. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881 [TBL] [Abstract][Full Text] [Related]
13. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer. Lin CL; Tan X; Chen M; Kusi M; Hung CN; Chou CW; Hsu YT; Wang CM; Kirma N; Chen CL; Lin CH; Lathrop KI; Elledge R; Kaklamani VG; Mitsuya K; Huang TH BMC Med Genomics; 2020 May; 13(1):69. PubMed ID: 32408897 [TBL] [Abstract][Full Text] [Related]
14. An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Liu P; Yuan B; Carvalho CMB; Wuster A; Walter K; Zhang L; Gambin T; Chong Z; Campbell IM; Coban Akdemir Z; Gelowani V; Writzl K; Bacino CA; Lindsay SJ; Withers M; Gonzaga-Jauregui C; Wiszniewska J; Scull J; Stankiewicz P; Jhangiani SN; Muzny DM; Zhang F; Chen K; Gibbs RA; Rautenstrauss B; Cheung SW; Smith J; Breman A; Shaw CA; Patel A; Hurles ME; Lupski JR Cell; 2017 Feb; 168(5):830-842.e7. PubMed ID: 28235197 [TBL] [Abstract][Full Text] [Related]
15. Long-read sequence analysis for clustered genomic copy number aberrations revealed architectures of intricately intertwined rearrangements. Tamura T; Yamamoto Shimojima K; Okamoto N; Yagasaki H; Morioka I; Kanno H; Minakuchi Y; Toyoda A; Yamamoto T Am J Med Genet A; 2023 Jan; 191(1):112-119. PubMed ID: 36282026 [TBL] [Abstract][Full Text] [Related]
16. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531 [TBL] [Abstract][Full Text] [Related]
17. Genomic Chaos (Multiple Copy Number Variations and Structural Reorganization) Detected in Two Prenatal Cases. Lloveras E; Canellas A; Plaja A; Barranco L; Fernández D; Mendez B; Piqué M; de la Iglesia C; Palau N; Costa M; Herrero M; Yeste D; Auge M; Puig L; Pérez C Cytogenet Genome Res; 2021; 161(5):236-242. PubMed ID: 34274931 [TBL] [Abstract][Full Text] [Related]
18. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Krupina K; Goginashvili A; Cleveland DW Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738 [TBL] [Abstract][Full Text] [Related]
19. Flanking complex copy number variants in the same family formed through unequal crossing-over during meiosis. Pettersson M; Eisfeldt J; Syk Lundberg E; Lundin J; Lindstrand A Mutat Res; 2018 Nov; 812():1-4. PubMed ID: 30384002 [TBL] [Abstract][Full Text] [Related]
20. Complex X-Chromosomal Rearrangements in Two Women with Ovarian Dysfunction: Implications of Chromothripsis/Chromoanasynthesis-Dependent and -Independent Origins of Complex Genomic Alterations. Suzuki E; Shima H; Toki M; Hanew K; Matsubara K; Kurahashi H; Narumi S; Ogata T; Kamimaki T; Fukami M Cytogenet Genome Res; 2016; 150(2):86-92. PubMed ID: 28099951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]