BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31138288)

  • 1. The effects of time valuation in cancer optimal therapies: a study of chronic myeloid leukemia.
    Gutiérrez-Diez PJ; López-Marcos MÁ; Martínez-Rodríguez J; Russo J
    Theor Biol Med Model; 2019 May; 16(1):10. PubMed ID: 31138288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia.
    Gutiérrez-Diez PJ; Russo J
    Math Biosci Eng; 2020 Jul; 17(5):4773-4800. PubMed ID: 33120528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dasatinib: from treatment of imatinib-resistant or -intolerant patients with chronic myeloid leukemia to treatment of patients with newly diagnosed chronic phase chronic myeloid leukemia.
    Abbott BL
    Clin Ther; 2012 Feb; 34(2):272-81. PubMed ID: 22285209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal control for resistance and suboptimal response in CML.
    Aïnseba B; Benosman C
    Math Biosci; 2010 Oct; 227(2):81-93. PubMed ID: 20638391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of strategic treatment interruptions during imatinib treatment of chronic myelogenous leukemia with imatinib-resistant mutations.
    Paquin D; Sacco D; Shamshoian J
    Math Biosci; 2015 Apr; 262():117-24. PubMed ID: 25659886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDGFRα promoter polymorphisms and expression patterns influence risk of development of imatinib-induced thrombocytopenia in chronic myeloid leukemia: A study from India.
    Guru SA; Mir R; Bhat M; Najar I; Zuberi M; Sumi M; Masroor M; Gupta N; Saxena A
    Tumour Biol; 2017 Oct; 39(10):1010428317713857. PubMed ID: 29019285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control of treatment in a mathematical model of chronic myelogenous leukemia.
    Nanda S; Moore H; Lenhart S
    Math Biosci; 2007 Nov; 210(1):143-56. PubMed ID: 17599363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel therapies for patients with chronic myeloid leukemia.
    Giles FJ; Kantarjian H; Cortes J
    Expert Rev Anticancer Ther; 2004 Apr; 4(2):271-82. PubMed ID: 15056057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted chronic myeloid leukemia therapy: Seeking a cure.
    Fausel C
    Am J Health Syst Pharm; 2007 Dec; 64(24 Suppl 15):S9-15. PubMed ID: 18056932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia as a model of rational drug design in cancer.
    Zámečníkova A
    Expert Rev Hematol; 2010 Feb; 3(1):45-56. PubMed ID: 21082933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of LYN and PTEN genes in chronic myeloid leukemia and their importance in therapeutic strategy.
    Ferri C; Bianchini M; Bengió R; Larripa I
    Blood Cells Mol Dis; 2014; 52(2-3):121-5. PubMed ID: 24091144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NKG2A Down-Regulation by Dasatinib Enhances Natural Killer Cytotoxicity and Accelerates Effective Treatment Responses in Patients With Chronic Myeloid Leukemia.
    Chang MC; Cheng HI; Hsu K; Hsu YN; Kao CW; Chang YF; Lim KH; Chen CG
    Front Immunol; 2018; 9():3152. PubMed ID: 30705677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the impact of imatinib mesylate therapy on the prognosis of patients with Philadelphia chromosome-positive chronic myelogenous leukemia treated with interferon-alpha regimens for early chronic phase.
    Kantarjian H; O'Brien S; Cortes J; Shan J; Giles F; Garcia-Manero G; Verstovsek S; Faderl S; Rios MB; Talpaz M
    Cancer; 2003 Oct; 98(7):1430-7. PubMed ID: 14508830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New strategies in controlling drug resistance in chronic myeloid leukemia.
    Frame D
    Am J Health Syst Pharm; 2007 Dec; 64(24 Suppl 15):S16-21. PubMed ID: 18056927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models.
    Kim PS; Lee PP; Levy D
    Bull Math Biol; 2008 Apr; 70(3):728-44. PubMed ID: 18060460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing of suppressor of cytokine signaling-3 due to methylation results in phosphorylation of STAT3 in imatinib resistant BCR-ABL positive chronic myeloid leukemia cells.
    Al-Jamal HA; Jusoh SA; Yong AC; Asan JM; Hassan R; Johan MF
    Asian Pac J Cancer Prev; 2014; 15(11):4555-61. PubMed ID: 24969884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecularly targeted treatment of chronic myeloid leukemia: beyond the imatinib era.
    Mughal TI; Goldman JM
    Front Biosci; 2006 Jan; 11():209-20. PubMed ID: 16146726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment.
    Miething C; Grundler R; Mugler C; Brero S; Hoepfl J; Geigl J; Speicher MR; Ottmann O; Peschel C; Duyster J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4594-9. PubMed ID: 17360569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Treatment Schedules for Chronic Myeloid Leukemia.
    He Q; Zhu J; Dingli D; Foo J; Leder KZ
    PLoS Comput Biol; 2016 Oct; 12(10):e1005129. PubMed ID: 27764087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial.
    Lipton JH; Chuah C; Guerci-Bresler A; Rosti G; Simpson D; Assouline S; Etienne G; Nicolini FE; le Coutre P; Clark RE; Stenke L; Andorsky D; Oehler V; Lustgarten S; Rivera VM; Clackson T; Haluska FG; Baccarani M; Cortes JE; Guilhot F; Hochhaus A; Hughes T; Kantarjian HM; Shah NP; Talpaz M; Deininger MW;
    Lancet Oncol; 2016 May; 17(5):612-21. PubMed ID: 27083332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.