BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31138628)

  • 1. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.
    Watzlawick H; Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2016 Oct; 198(20):2887-96. PubMed ID: 27501980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum.
    Silvestroni A; Connes C; Sesma F; De Giori GS; Piard JC
    Appl Environ Microbiol; 2002 Nov; 68(11):5464-71. PubMed ID: 12406739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of genes involved in the metabolism of alpha-galactosides by Lactococcus raffinolactis.
    Boucher I; Vadeboncoeur C; Moineau S
    Appl Environ Microbiol; 2003 Jul; 69(7):4049-56. PubMed ID: 12839781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in
    Arunraj R; Skori L; Kumar A; Hickerson NMN; Shoma N; M V; Samuel MA
    Plant Signal Behav; 2020 Aug; 15(8):1709707. PubMed ID: 31906799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.
    Teixeira JS; McNeill V; Gänzle MG
    Food Microbiol; 2012 Sep; 31(2):278-84. PubMed ID: 22608234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi.
    Rehms H; Barz W
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):47-52. PubMed ID: 8579835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of novel α-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application.
    Shin YJ; Woo SH; Jeong HM; Kim JS; Ko DS; Jeong DW; Lee JH; Shim JH
    Int J Biol Macromol; 2020 Jun; 152():727-734. PubMed ID: 32092418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
    Hua B; Zhang M; Zhang J; Dai H; Zhang Z; Miao M
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Charaoui-Boukerzaza S
    J Bacteriol; 2009 Nov; 191(22):6960-7. PubMed ID: 19734309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular alpha-galactosidase from Debaryomyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides.
    Viana PA; de Rezende ST; Marques VM; Trevizano LM; Passos FM; Oliveira MG; Bemquerer MP; Oliveira JS; Guimarães VM
    J Agric Food Chem; 2006 Mar; 54(6):2385-91. PubMed ID: 16536623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk.
    Jang JM; Yang Y; Wang R; Bao H; Yuan H; Yang J
    Int J Biol Macromol; 2019 Jun; 131():1138-1146. PubMed ID: 30981775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves.
    Gu H; Lu M; Zhang Z; Xu J; Cao W; Miao M
    J Plant Physiol; 2018; 224-225():112-120. PubMed ID: 29617631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a thermostable glycoside hydrolase family 36 α-galactosidase from Caldicellulosiruptor bescii.
    Lee A; Choi KH; Yoon D; Kim S; Cha J
    J Biosci Bioeng; 2017 Sep; 124(3):289-295. PubMed ID: 28479043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 alpha-galactosidase.
    Van Laere KM; Hartemink R; Beldman G; Pitson S; Dijkema C; Schols HA; Voragen AG
    Appl Microbiol Biotechnol; 1999 Nov; 52(5):681-8. PubMed ID: 10570815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont.
    Cervera-Tison M; Tailford LE; Fuell C; Bruel L; Sulzenbacher G; Henrissat B; Berrin JG; Fons M; Giardina T; Juge N
    Appl Environ Microbiol; 2012 Nov; 78(21):7720-32. PubMed ID: 22923411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system.
    Rosenow C; Maniar M; Trias J
    Genome Res; 1999 Dec; 9(12):1189-97. PubMed ID: 10613841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.
    Fridjonsson O; Watzlawick H; Gehweiler A; Mattes R
    FEMS Microbiol Lett; 1999 Jul; 176(1):147-53. PubMed ID: 10418141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.