BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31138628)

  • 21. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization.
    Gage DJ; Long SR
    J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003.
    O'Connell KJ; O'Connell Motherway M; O'Callaghan J; Fitzgerald GF; Ross RP; Ventura M; Stanton C; van Sinderen D
    Appl Environ Microbiol; 2013 Oct; 79(20):6280-92. PubMed ID: 23913435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage.
    Pukacka S; Ratajczak E; Kalemba E
    J Plant Physiol; 2009 Sep; 166(13):1381-90. PubMed ID: 19359065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses.
    Zhang Q; Song X; Bartels D
    Plant Sci; 2018 May; 270():30-36. PubMed ID: 29576083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides.
    Huang Y; Zhang H; Ben P; Duan Y; Lu M; Li Z; Cui Z
    Int J Biol Macromol; 2018 Mar; 108():98-104. PubMed ID: 29183739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana.
    Li T; Zhang Y; Wang D; Liu Y; Dirk LMA; Goodman J; Downie AB; Wang J; Wang G; Zhao T
    Mol Plant; 2017 Dec; 10(12):1540-1555. PubMed ID: 29122666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidase from Gibberella fujikuroi.
    Mulimani VH; Ramalingam
    Biochem Mol Biol Int; 1995 Jul; 36(4):897-905. PubMed ID: 8528153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D; Pham VT
    J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificities of Penicillium simplicissimum alpha-galactosidases.
    Luonteri E; Tenkanen M; Viikari L
    Enzyme Microb Technol; 1998 Feb; 22(3):192-8. PubMed ID: 9463945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria.
    Moniruzzaman M; Lai X; York SW; Ingram LO
    J Bacteriol; 1997 Mar; 179(6):1880-6. PubMed ID: 9068632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics.
    Zartl B; Silberbauer K; Loeppert R; Viernstein H; Praznik W; Mueller M
    Food Funct; 2018 Mar; 9(3):1638-1646. PubMed ID: 29465736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides.
    Ferreira JG; Reis AP; Guimarães VM; Falkoski DL; Fialho Lda S; de Rezende ST
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1111-25. PubMed ID: 21331589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism.
    Russell RR; Aduse-Opoku J; Sutcliffe IC; Tao L; Ferretti JJ
    J Biol Chem; 1992 Mar; 267(7):4631-7. PubMed ID: 1537846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of alpha-galactooligosaccharides with alpha-galactosidase from Lactobacillus reuteri of canine origin.
    Tzortzis G; Jay AJ; Baillon ML; Gibson GR; Rastall RA
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):286-92. PubMed ID: 12955354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen.
    Song J; Liu Y; Yin X; Nan Y; Shi Y; Chen X; Liang H; Zhang J; Ma B
    Carbohydr Res; 2023 Dec; 534():108948. PubMed ID: 37783055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis.
    Yoshida KI; Fujita Y; Ehrlich SD
    J Bacteriol; 2000 Oct; 182(19):5454-61. PubMed ID: 10986249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase.
    Díez-Municio M; Herrero M; de Las Rivas B; Muñoz R; Jimeno ML; Moreno FJ
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6251-6263. PubMed ID: 26940051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular analysis of an enigmatic
    Hobbs JK; Meier EPW; Pluvinage B; Mey MA; Boraston AB
    J Biol Chem; 2019 Nov; 294(46):17197-17208. PubMed ID: 31591266
    [No Abstract]   [Full Text] [Related]  

  • 40. Properties of an alpha-galactosidase, and structure of its gene galA, within an alpha-and beta-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima.
    Liebl W; Wagner B; Schellhase J
    Syst Appl Microbiol; 1998 Mar; 21(1):1-11. PubMed ID: 9741105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.