BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31138628)

  • 41. Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation.
    Delgado-Fernandez P; Plaza-Vinuesa L; Hernandez-Hernandez O; de Las Rivas B; Corzo N; Muñoz R; Javier Moreno F
    Int J Biol Macromol; 2020 Jun; 153():1070-1079. PubMed ID: 31672636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by
    Delgado-Fernandez P; de Las Rivas B; Muñoz R; Jimeno ML; Doyagüez EG; Corzo N; Moreno FJ
    J Agric Food Chem; 2021 Jan; 69(3):955-965. PubMed ID: 33434031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Bacillus halodurans alpha-galactosidase Mel4A encoded by the mel4A gene (BH2228).
    Anggraeni AA; Sakka M; Kimura T; Ratanakhaokchai K; Kitaoka M; Sakka K
    Biosci Biotechnol Biochem; 2008 Sep; 72(9):2459-62. PubMed ID: 18776668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities.
    Bruel L; Sulzenbacher G; Cervera Tison M; Pujol A; Nicoletti C; Perrier J; Galinier A; Ropartz D; Fons M; Pompeo F; Giardina T
    J Biol Chem; 2011 Nov; 286(47):40814-23. PubMed ID: 21931163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and characterization of an α-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides.
    Du F; Zhu M; Wang H; Ng T
    Plant Physiol Biochem; 2013 Aug; 69():49-53. PubMed ID: 23727589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The potential role of nondigestible Raffinose family oligosaccharides as prebiotics.
    Kanwal F; Ren D; Kanwal W; Ding M; Su J; Shang X
    Glycobiology; 2023 May; 33(4):274-288. PubMed ID: 36795047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and Identification of an α-Galactosidase-Producing
    Zhao Y; Zhou J; Dai S; Liu X; Zhang X
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides.
    Álvarez-Cao ME; Cerdán ME; González-Siso MI; Becerra M
    Microb Cell Fact; 2019 Oct; 18(1):172. PubMed ID: 31601209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).
    Findling S; Zanger K; Krueger S; Lohaus G
    Planta; 2015 Jan; 241(1):229-41. PubMed ID: 25269399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determinants of raffinose family oligosaccharide use in
    Basu A; Adams AND; Degnan PH; Vanderpool CK
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895307
    [No Abstract]   [Full Text] [Related]  

  • 51. Isolation of a protease-resistant and pH-stable α-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agaricus bisporus.
    Hu Y; Zhu M; Tian G; Zhao L; Wang H; Ng TB
    Int J Biol Macromol; 2017 Nov; 104(Pt A):576-583. PubMed ID: 28634061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Genetic analysis of raffinose utilization in Escherichia coli K12 and relation to K88 surface antigen].
    Alaeddinoğlu GN
    Mikrobiyol Bul; 1982 Jan; 16(1):21-32. PubMed ID: 6755198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of α-galacto-oligosaccharides formed via heterologous expression of α-galactosidases from Lactobacillus reuteri in Lactococcus lactis.
    Wang Y; Black BA; Curtis JM; Gänzle MG
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2507-17. PubMed ID: 23942880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.
    Vincent SF; Bell PJ; Bissinger P; Nevalainen KM
    Lett Appl Microbiol; 1999 Feb; 28(2):148-52. PubMed ID: 10063644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis.
    Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of α-galactoside content in red gram (Cajanus cajan L.) upon germination followed by heat treatment.
    Devindra S; Sreenivasa Rao J; Krishnaswamy P; Bhaskar V
    J Sci Food Agric; 2011 Aug; 91(10):1829-35. PubMed ID: 21452170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit.
    Peters S; Mundree SG; Thomson JA; Farrant JM; Keller F
    J Exp Bot; 2007; 58(8):1947-56. PubMed ID: 17452754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impairment of melibiose utilization in Streptococcus mutans serotype c gtfA mutants.
    Barletta RG; Curtiss R
    Infect Immun; 1989 Mar; 57(3):992-5. PubMed ID: 2537260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport of sugars, including sucrose, by the msm transport system of Streptococcus mutans.
    Tao L; Sutcliffe IC; Russell RR; Ferretti JJ
    J Dent Res; 1993 Oct; 72(10):1386-90. PubMed ID: 8408880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction of a vector for the study of regulatory mechanism of gene expression and its utilization in the melibiose operon of Escherichia coli.
    Shimamoto T; Noguchi K; Kuroda M; Tsuda M; Tsuchiya T
    Nucleic Acids Symp Ser; 1988; (19):171-3. PubMed ID: 2852352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.