BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31138662)

  • 1. The Toll-Like Receptor/MyD88/XBP1 Signaling Axis Mediates Skeletal Muscle Wasting during Cancer Cachexia.
    Bohnert KR; Goli P; Roy A; Sharma AK; Xiong G; Gallot YS; Kumar A
    Mol Cell Biol; 2019 Aug; 39(15):. PubMed ID: 31138662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MyD88-mediated signaling intercedes in neurogenic muscle atrophy through multiple mechanisms.
    Parveen A; Bohnert KR; Tomaz da Silva M; Wen Y; Bhat R; Roy A; Kumar A
    FASEB J; 2021 Aug; 35(8):e21821. PubMed ID: 34325487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 4 mediates Lewis lung carcinoma-induced muscle wasting via coordinate activation of protein degradation pathways.
    Zhang G; Liu Z; Ding H; Miao H; Garcia JM; Li YP
    Sci Rep; 2017 May; 7(1):2273. PubMed ID: 28536426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.
    Bohnert KR; Gallot YS; Sato S; Xiong G; Hindi SM; Kumar A
    FASEB J; 2016 Sep; 30(9):3053-68. PubMed ID: 27206451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle.
    Braun TP; Grossberg AJ; Krasnow SM; Levasseur PR; Szumowski M; Zhu XX; Maxson JE; Knoll JG; Barnes AP; Marks DL
    FASEB J; 2013 Sep; 27(9):3572-82. PubMed ID: 23733748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia.
    Puppa MJ; Gao S; Narsale AA; Carson JA
    FASEB J; 2014 Feb; 28(2):998-1009. PubMed ID: 24145720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IL-17A contributes to skeletal muscle atrophy in lung cancer-induced cachexia via JAK2/STAT3 pathway.
    Ying L; Yao Y; Lv H; Lu G; Zhang Q; Yang Y; Zhou J
    Am J Physiol Cell Physiol; 2022 May; 322(5):C814-C824. PubMed ID: 35319902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300.
    Sin TK; Zhang G; Zhang Z; Zhu JZ; Zuo Y; Frost JA; Li M; Li YP
    Cancer Res; 2021 Feb; 81(4):885-897. PubMed ID: 33355181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism.
    Roy A; Tomaz da Silva M; Bhat R; Bohnert KR; Iwawaki T; Kumar A
    Elife; 2021 Nov; 10():. PubMed ID: 34812145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia.
    Wang H; Lai YJ; Chan YL; Li TL; Wu CJ
    Cancer Lett; 2011 Jun; 305(1):40-9. PubMed ID: 21397390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REDD1 deletion attenuates cancer cachexia in mice.
    Hain BA; Xu H; VanCleave AM; Gordon BS; Kimball SR; Waning DL
    J Appl Physiol (1985); 2021 Dec; 131(6):1718-1730. PubMed ID: 34672766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morin suppresses cachexia-induced muscle wasting by binding to ribosomal protein S10 in carcinoma cells.
    Yoshimura T; Saitoh K; Sun L; Wang Y; Taniyama S; Yamaguchi K; Uchida T; Ohkubo T; Higashitani A; Nikawa T; Tachibana K; Hirasaka K
    Biochem Biophys Res Commun; 2018 Dec; 506(4):773-779. PubMed ID: 30389140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress.
    Hulmi JJ; Hentilä J; DeRuisseau KC; Oliveira BM; Papaioannou KG; Autio R; Kujala UM; Ritvos O; Kainulainen H; Korkmaz A; Atalay M
    Free Radic Biol Med; 2016 Oct; 99():308-322. PubMed ID: 27554968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced sucrose nonfermenting AMPK-related kinase (SNARK) activity aggravates cancer-induced skeletal muscle wasting.
    Alves CRR; MacDonald TL; Nigro P; Pathak P; Hirshman MF; Goodyear LJ; Lessard SJ
    Biomed Pharmacother; 2019 Sep; 117():109197. PubMed ID: 31387190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β‑carotene attenuates muscle wasting in cancer cachexia by regulating myogenesis and muscle atrophy.
    Kim Y; Oh Y; Kim YS; Shin JH; Lee YS; Kim Y
    Oncol Rep; 2024 Jan; 51(1):. PubMed ID: 37975253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.
    Murphy KT; Chee A; Gleeson BG; Naim T; Swiderski K; Koopman R; Lynch GS
    Am J Physiol Regul Integr Comp Physiol; 2011 Sep; 301(3):R716-26. PubMed ID: 21677277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PERK regulates skeletal muscle mass and contractile function in adult mice.
    Gallot YS; Bohnert KR; Straughn AR; Xiong G; Hindi SM; Kumar A
    FASEB J; 2019 Feb; 33(2):1946-1962. PubMed ID: 30204503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative molecular analysis of early and late cancer cachexia-induced muscle wasting in mouse models.
    Sun R; Zhang S; Lu X; Hu W; Lou N; Zhao Y; Zhou J; Zhang X; Yang H
    Oncol Rep; 2016 Dec; 36(6):3291-3302. PubMed ID: 27748895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling.
    Zhu Z; Li C; Gu X; Wang X; Zhang G; Fan M; Zhao Y; Liu X; Zhang X
    Toxicol Appl Pharmacol; 2024 Mar; 484():116846. PubMed ID: 38331105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.