These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31138792)

  • 1. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals.
    Fisher R; Bessell-Browne P; Jones R
    Nat Commun; 2019 May; 10(1):2346. PubMed ID: 31138792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental impacts of dredging and other sediment disturbances on corals: a review.
    Erftemeijer PL; Riegl B; Hoeksema BW; Todd PA
    Mar Pollut Bull; 2012 Sep; 64(9):1737-65. PubMed ID: 22682583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cumulative impacts: thermally bleached corals have reduced capacity to clear deposited sediment.
    Bessell-Browne P; Negri AP; Fisher R; Clode PL; Jones R
    Sci Rep; 2017 Jun; 7(1):2716. PubMed ID: 28578383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes.
    Cunning R; Silverstein RN; Barnes BB; Baker AC
    Mar Pollut Bull; 2019 Aug; 145():185-199. PubMed ID: 31590775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments.
    Bessell-Browne P; Negri AP; Fisher R; Clode PL; Duckworth A; Jones R
    Mar Pollut Bull; 2017 Apr; 117(1-2):161-170. PubMed ID: 28162249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 2: Potential coral effects.
    Nelson DS; McManus J; Richmond RH; King DB; Gailani JZ; Lackey TC; Bryant D
    J Environ Manage; 2016 Mar; 168():111-22. PubMed ID: 26704453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework.
    Fabricius KE; Cséke S; Humphrey C; De'ath G
    PLoS One; 2013; 8(1):e54399. PubMed ID: 23349876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impacts of sediments from dredging on corals.
    Jones R; Bessell-Browne P; Fisher R; Klonowski W; Slivkoff M
    Mar Pollut Bull; 2016 Jan; 102(1):9-29. PubMed ID: 26654296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment deposition and coral smothering.
    Jones R; Fisher R; Bessell-Browne P
    PLoS One; 2019; 14(6):e0216248. PubMed ID: 31216275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dissolved nickel and nickel-contaminated suspended sediment on the scleractinian coral, Acropora muricata.
    Gillmore ML; Gissi F; Golding LA; Stauber JL; Reichelt-Brushett AJ; Severati A; Humphrey CA; Jolley DF
    Mar Pollut Bull; 2020 Mar; 152():110886. PubMed ID: 32479277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis.
    Humanes A; Ricardo GF; Willis BL; Fabricius KE; Negri AP
    Sci Rep; 2017 Mar; 7():44101. PubMed ID: 28281658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia.
    Restrepo JD; Park E; Aquino S; Latrubesse EM
    Sci Total Environ; 2016 May; 553():316-329. PubMed ID: 26933966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early recovery dynamics of turbid coral reefs after recurring bleaching events.
    Evans RD; Wilson SK; Fisher R; Ryan NM; Babcock R; Blakeway D; Bond T; Dorji P; Dufois F; Fearns P; Lowe RJ; Stoddart J; Thomson DP
    J Environ Manage; 2020 Aug; 268():110666. PubMed ID: 32510431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of moderate thermal anomalies on Acropora corals around Sesoko Island, Okinawa.
    Singh T; Iijima M; Yasumoto K; Sakai K
    PLoS One; 2019; 14(1):e0210795. PubMed ID: 30699163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.
    Chou LM; Toh TC; Toh KB; Ng CS; Cabaitan P; Tun K; Goh E; Afiq-Rosli L; Taira D; Du RC; Loke HX; Khalis A; Li J; Song T
    PLoS One; 2016; 11(7):e0159755. PubMed ID: 27438593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching.
    Stuart-Smith RD; Brown CJ; Ceccarelli DM; Edgar GJ
    Nature; 2018 Aug; 560(7716):92-96. PubMed ID: 30046108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the risk of light reduction from natural sediment resuspension events and dredging activities in an inshore turbid reef environment.
    Luter HM; Pineda MC; Ricardo G; Francis DS; Fisher R; Jones R
    Mar Pollut Bull; 2021 Sep; 170():112536. PubMed ID: 34126443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential impact of heat stress on reef-building corals under different light conditions.
    Rosic N; Rémond C; Mello-Athayde MA
    Mar Environ Res; 2020 Jun; 158():104947. PubMed ID: 32250839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis.
    Humanes A; Noonan SH; Willis BL; Fabricius KE; Negri AP
    PLoS One; 2016; 11(8):e0161616. PubMed ID: 27575699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbid reefs moderate coral bleaching under climate-related temperature stress.
    Sully S; van Woesik R
    Glob Chang Biol; 2020 Mar; 26(3):1367-1373. PubMed ID: 31912964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.