These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31138857)
1. Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature. Chen YH; Chen YH; Hsu WD; Chang YC; Sheu HS; Lee JJ; Lin SK Sci Rep; 2019 May; 9(1):7950. PubMed ID: 31138857 [TBL] [Abstract][Full Text] [Related]
2. Greigite: a true intermediate on the polysulfide pathway to pyrite. Hunger S; Benning LG Geochem Trans; 2007 Mar; 8():1. PubMed ID: 17376247 [TBL] [Abstract][Full Text] [Related]
3. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Lin S; Krause F; Voordouw G Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Kocaman AT; Cemek M; Edwards KJ Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502 [TBL] [Abstract][Full Text] [Related]
5. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Ma KF; Tanaka H; Song SR; Wang CY; Hung JH; Tsai YB; Mori J; Song YF; Yeh EC; Soh W; Sone H; Kuo LW; Wu HY Nature; 2006 Nov; 444(7118):473-6. PubMed ID: 17122854 [TBL] [Abstract][Full Text] [Related]
6. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Pósfai M; Buseck PR; Bazylinski DA; Frankel RB Science; 1998 May; 280(5365):880-3. PubMed ID: 9572727 [TBL] [Abstract][Full Text] [Related]
7. Effect of iron minerals during coaling on the transformation of NO in the presence of NH Shu D; Chen T; Zou X; Li M; Wang C; Wang H; Han Z; Liu H Sci Total Environ; 2020 Aug; 731():138951. PubMed ID: 32417472 [TBL] [Abstract][Full Text] [Related]
8. Impact of Tohoku-Oki 3.11 M9.0 Earthquake on the Fault Slip Potential of the Active Quaternary Faults in Beijing City: New Insights from In Situ Stress Monitoring Data. Fan Y; Feng C; Zhang P; Qi B; Meng J; Tan C Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808384 [TBL] [Abstract][Full Text] [Related]
9. Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. Liu H; Zhu Y; Xu B; Li P; Sun Y; Chen T J Hazard Mater; 2017 Jan; 322(Pt B):488-498. PubMed ID: 27776872 [TBL] [Abstract][Full Text] [Related]
10. Electron Transfer between Electrically Conductive Minerals and Quinones. Taran O Front Chem; 2017; 5():49. PubMed ID: 28752088 [TBL] [Abstract][Full Text] [Related]
11. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation. He J; Zhang B; Wang Y; Chen S; Dong H Environ Sci Technol; 2023 Jan; 57(4):1807-1818. PubMed ID: 36598371 [TBL] [Abstract][Full Text] [Related]
12. Impacts of cryogenic sampling processes on iron mineral coatings in contaminated sediment. Hua H; Yin X; Renno MI; Sale TC; Landis R; Dyer JA; Axe L Sci Total Environ; 2021 Apr; 765():142796. PubMed ID: 33092846 [TBL] [Abstract][Full Text] [Related]
13. Fault Dynamics of the 1999 Chi-Chi earthquake: clues from nanometric geochemical analysis of fault gouges. Li WH; Lee CH; Ma MH; Huang PJ; Wu SY Sci Rep; 2019 Apr; 9(1):5683. PubMed ID: 30952874 [TBL] [Abstract][Full Text] [Related]
14. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Bazylinski DA; Garratt-Reed AJ; Frankel RB Microsc Res Tech; 1994 Apr; 27(5):389-401. PubMed ID: 8018991 [TBL] [Abstract][Full Text] [Related]
15. Quantification of Organic Carbon Sequestered by Biogenic Iron Sulfide Minerals in Long-Term Anoxic Laboratory Incubations. Nabeh N; Brokaw C; Picard A Front Microbiol; 2022; 13():662219. PubMed ID: 35572660 [TBL] [Abstract][Full Text] [Related]
16. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Fulton PM; Brodsky EE; Kano Y; Mori J; Chester F; Ishikawa T; Harris RN; Lin W; Eguchi N; Toczko S; Science; 2013 Dec; 342(6163):1214-7. PubMed ID: 24311684 [TBL] [Abstract][Full Text] [Related]
17. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature. Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215 [TBL] [Abstract][Full Text] [Related]
18. Heme protein identified from scaly-foot gastropod can synthesize pyrite (FeS Yamashita T; Matsuda H; Koizumi K; Thirumalaisamy L; Kim M; Negishi L; Kurumizaka H; Tominaga Y; Takagi Y; Takai K; Okumura T; Katayama H; Horitani M; Ahsan N; Okada Y; Nagata K; Suzuki Y; Suzuki M Acta Biomater; 2023 May; 162():110-119. PubMed ID: 36924877 [TBL] [Abstract][Full Text] [Related]
19. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite. Lopez-Arce P; Garcia-Guinea J; Garrido F Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of sulphide minerals--I: determination of ferrous and ferric iron in samples of pyrrhotite, pyrite and chalcopyrite. Steger HF Talanta; 1977 Apr; 24(4):251-4. PubMed ID: 18962075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]