BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3113936)

  • 1. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man?
    Greenhaff PL; Gleeson M; Whiting PH; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1987; 56(4):444-50. PubMed ID: 3113936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1987; 56(3):331-7. PubMed ID: 3569242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of diet on muscle pH and metabolism during high intensity exercise.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1988; 57(5):531-9. PubMed ID: 3396568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a glycogen loading regimen on acid-base status and blood lactate concentration before and after a fixed period of high intensity exercise in man.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1988; 57(2):254-9. PubMed ID: 3349995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of dietary manipulation on plasma ammonia accumulation during incremental exercise in man.
    Greenhaff PL; Leiper JB; Ball D; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):338-44. PubMed ID: 1773809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acute reversal of a diet-induced metabolic acidosis does not restore endurance capacity during high-intensity exercise in man.
    Ball D; Greenhaff PL; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1996; 73(1-2):105-12. PubMed ID: 8861677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of alterations in dietary carbohydrate intake on the performance of high-intensity exercise in trained individuals.
    Pitsiladis YP; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):433-42. PubMed ID: 10208253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet-induced metabolic acidosis and the performance of high intensity exercise in man.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1988; 57(5):583-90. PubMed ID: 3396576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of dietary manipulation upon the respiratory exchange ratio as a predictor of maximum oxygen uptake during fixed term maximal incremental exercise in man.
    Aitken JC; Thompson J
    Eur J Appl Physiol Occup Physiol; 1989; 58(7):722-7. PubMed ID: 2737192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sodium citrate ingestion on the metabolic response to intense exercise following diet manipulation in man.
    Ball D; Maughan RJ
    Exp Physiol; 1997 Nov; 82(6):1041-56. PubMed ID: 9413735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of altering the proportion of dietary fat and carbohydrate on exercise gas exchange in normal subjects.
    Sue DY; Chung MM; Grosvenor M; Wasserman K
    Am Rev Respir Dis; 1989 Jun; 139(6):1430-4. PubMed ID: 2499233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of training and diet on metabolism and endurance during exercise in man.
    Helge JW; Richter EA; Kiens B
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):293-306. PubMed ID: 8730603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day.
    Rustad PI; Sailer M; Cumming KT; Jeppesen PB; Kolnes KJ; Sollie O; Franch J; Ivy JL; Daniel H; Jensen J
    PLoS One; 2016; 11(4):e0153229. PubMed ID: 27078151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a 24 h fast on high intensity cycle exercise performance in man.
    Gleeson M; Greenhaff PL; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1988; 57(6):653-9. PubMed ID: 3416848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise.
    Carey AL; Staudacher HM; Cummings NK; Stepto NK; Nikolopoulos V; Burke LM; Hawley JA
    J Appl Physiol (1985); 2001 Jul; 91(1):115-22. PubMed ID: 11408421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of a fat-rich diet on endurance in man: role of the dietary period.
    Helge JW; Wulff B; Kiens B
    Med Sci Sports Exerc; 1998 Mar; 30(3):456-61. PubMed ID: 9526894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycogen repletion and exercise endurance in rats adapted to a high fat diet.
    Conlee RK; Hammer RL; Winder WW; Bracken ML; Nelson AG; Barnett DW
    Metabolism; 1990 Mar; 39(3):289-94. PubMed ID: 2308519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of dietary carbohydrate and pre-exercise glucose consumption on supramaximal intermittent exercise performance.
    Jenkins DG; Hutchins CA; Spillman D
    Br J Sports Med; 1994 Sep; 28(3):171-6. PubMed ID: 8000815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities.
    Lima-Silva AE; De-Oliveira FR; Nakamura FY; Gevaerd MS
    Braz J Med Biol Res; 2009 May; 42(5):404-12. PubMed ID: 19377788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Day to day variability in fat oxidation and the effect after only 1 day of change in diet composition.
    Støa EM; Nyhus LK; Børresen SC; Nygaard C; Hovet ÅM; Bratland-Sanda S; Helgerud J; Støren Ø
    Appl Physiol Nutr Metab; 2016 Apr; 41(4):397-404. PubMed ID: 26960444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.