These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3113947)

  • 21. Reconstitution of adipokinetic hormone biosynthesis in vitro indicates steps in prohormone processing.
    Rayne RC; O'Shea M
    Eur J Biochem; 1994 Feb; 219(3):781-9. PubMed ID: 8112329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient amidation of C-peptide deleted NPY precursors by non-endocrine cells is affected by the presence of Lys-Arg at the C-terminus.
    Wulff BS; Catipovic B; Okamoto H; Gether U; Schwartz TW; Johansen TE
    Mol Cell Endocrinol; 1993 Feb; 91(1-2):135-41. PubMed ID: 8472845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific processing of the thyrotropin-releasing prohormone in rat brain and spinal cord.
    Cockle SM; Smyth DG
    Eur J Biochem; 1987 Jun; 165(3):693-8. PubMed ID: 3109909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of proTRH to its intermediate products occurs before the packing into secretory granules of transfected AtT20 cells.
    Nillni EA; Sevarino KA; Jackson IM
    Endocrinology; 1993 Mar; 132(3):1271-7. PubMed ID: 8440188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exocrine secretion granules contain peptide amidation activity.
    von Zastrow M; Tritton TR; Castle JD
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3297-301. PubMed ID: 3458183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro processing of proopiocortin by membrane-associated and soluble converting enzyme activities from rat intermediate lobe secretory granules.
    Chang TL; Loh YP
    Endocrinology; 1984 Jun; 114(6):2092-9. PubMed ID: 6327233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subcellular fractionation of pituitary neurointermediate lobes: revelation of various basic proteases.
    Pélaprat D; Seidah NG; Sikstrom RA; Lambelin P; Hamelin J; Lazure C; Cromlish JA; Chrétien M
    Endocrinology; 1984 Aug; 115(2):581-90. PubMed ID: 6430676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalysis of slow C-terminal processing reactions by carboxypeptidase H.
    Smyth DG; Maruthainar K; Darby NJ; Fricker LD
    J Neurochem; 1989 Aug; 53(2):489-93. PubMed ID: 2526198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificity of glutaminyl cyclases from plants and animals.
    Schilling S; Manhart S; Hoffmann T; Ludwig HH; Wasternack C; Demuth HU
    Biol Chem; 2003 Dec; 384(12):1583-92. PubMed ID: 14719800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides.
    Fischer WH; Spiess J
    Proc Natl Acad Sci U S A; 1987 Jun; 84(11):3628-32. PubMed ID: 3473473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An aminopeptidase activity in bovine pituitary secretory vesicles that cleaves the N-terminal arginine from beta-lipotropin60-65.
    Gainer H; Russell JT; Loh YP
    FEBS Lett; 1984 Sep; 175(1):135-9. PubMed ID: 6434344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing.
    Davidson HW; Hutton JC
    Biochem J; 1987 Jul; 245(2):575-82. PubMed ID: 2822027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport.
    Acher R; Chauvet J; Rouille Y
    J Mol Neurosci; 2002 Jun; 18(3):223-8. PubMed ID: 12059040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thyroid hormones modulate thyrotropin-releasing hormone biosynthesis in tissues outside the hypothalamic-pituitary axis of male rats.
    Simard M; Pekary AE; Smith VP; Hershman JM
    Endocrinology; 1989 Jul; 125(1):524-31. PubMed ID: 2500333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The enzymatic formation of novel bile acid primary amides.
    King L; Barnes S; Glufke U; Henz ME; Kirk M; Merkler KA; Vederas JC; Wilcox BJ; Merkler DJ
    Arch Biochem Biophys; 2000 Feb; 374(2):107-17. PubMed ID: 10666288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing reactions in the later stages of hormone activation.
    Bleakman A; Bradbury AF; Darby NJ; Maruthainar K; Smyth DG
    Biochimie; 1988 Jan; 70(1):3-10. PubMed ID: 2969753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 4-Phenyl-3-butenoic acid, an in vivo inhibitor of peptidylglycine hydroxylase (peptide amidating enzyme).
    Bradbury AF; Mistry J; Roos BA; Smyth DG
    Eur J Biochem; 1990 Apr; 189(2):363-8. PubMed ID: 2110897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential formation of beta-endorphin-related peptides in porcine pituitary.
    Smyth DG; Darby NJ; Maruthainar K
    Neuroendocrinology; 1988 Apr; 47(4):317-22. PubMed ID: 2967443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An endopeptidase associated with bovine neurohypophysis secretory granules cleaves pro-ocytocin/neurophysin peptide at paired basic residues.
    Clamagirand C; Camier M; Boussetta H; Fahy C; Morel A; Nicolas P; Cohen P
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1190-6. PubMed ID: 3511914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neurosecretory granule Lys-Arg Ca(2+)-dependent endopeptidase putatively involved in prooxytocin and provasopressin processing.
    Rouillé Y; Spang A; Chauvet J; Acher R
    Neuropeptides; 1992 Aug; 22(4):223-8. PubMed ID: 1508325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.