These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31139749)

  • 1. Highly selective electrochemical hydrogenation of alkynes: Rapid construction of mechanochromic materials.
    Li B; Ge H
    Sci Adv; 2019 May; 5(5):eaaw2774. PubMed ID: 31139749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-selective Hydrogenation/Deuteration of Benzylic Olefins Enabled by Electroreduction Using Water.
    Kolb S; Werz DB
    Chemistry; 2023 Jun; 29(32):e202300849. PubMed ID: 36972395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-Free Selective Semi-Hydrogenation of Alkynes Over an In Situ Formed Copper Nanoparticle Electrode.
    Guo P; Xu Y; Wu H; Zhang L
    Small; 2024 Mar; ():e2401107. PubMed ID: 38530045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium Pincer Complexes and Their Applications in Catalytic Semihydrogenation of Alkynes and Hydrogenation of Alkenes: Evidence for Metal-Ligand Cooperation.
    Liang Y; Das UK; Luo J; Diskin-Posner Y; Avram L; Milstein D
    J Am Chem Soc; 2022 Oct; 144(41):19115-19126. PubMed ID: 36194894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenation of Alkynes and Olefins Catalyzed by Quaternary Ammonium Salts.
    Guo Q; Shen G; Lu G; Qian J; Que Q; Li J; Guo Y; Fan B
    Adv Sci (Weinh); 2024 Feb; 11(7):e2305271. PubMed ID: 38072676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives.
    Yan M; Jin T; Ishikawa Y; Minato T; Fujita T; Chen LY; Bao M; Asao N; Chen MW; Yamamoto Y
    J Am Chem Soc; 2012 Oct; 134(42):17536-42. PubMed ID: 23020313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.
    Vilé G; Almora-Barrios N; Mitchell S; López N; Pérez-Ramírez J
    Chemistry; 2014 May; 20(20):5926-37. PubMed ID: 24753096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Selective Electrocatalytic Hydrogenation of Alkynes to Alkenes.
    Liu Z; Zhang L; Ren Z; Zhang J
    Chemistry; 2023 Mar; 29(15):e202202979. PubMed ID: 36504420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.
    Rangheard C; de Julián Fernández C; Phua PH; Hoorn J; Lefort L; de Vries JG
    Dalton Trans; 2010 Sep; 39(36):8464-71. PubMed ID: 20714614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly chemo- and stereoselective palladium-catalyzed transfer semihydrogenation of internal alkynes affording cis-alkenes.
    Li J; Hua R; Liu T
    J Org Chem; 2010 May; 75(9):2966-70. PubMed ID: 20345142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alkene-promoted borane-catalyzed highly stereoselective hydrogenation of alkynes to give Z- and E-alkenes.
    Liu Y; Hu L; Chen H; Du H
    Chemistry; 2015 Feb; 21(8):3495-501. PubMed ID: 25589473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-iron oxide core-shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media.
    Hudson R; Rivière A; Cirtiu CM; Luska KL; Moores A
    Chem Commun (Camb); 2012 Apr; 48(27):3360-2. PubMed ID: 22363939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diboron-Assisted Copper-Catalyzed Z-Selective Semihydrogenation of Alkynes Using Ethanol as a Hydrogen Donor.
    Bao H; Zhou B; Jin H; Liu Y
    J Org Chem; 2019 Mar; 84(6):3579-3589. PubMed ID: 30799625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium-catalyzed dehydrogenative cis double phosphorylation of alkynes with H-phosphonate leading to (Z)-bisphosphoryl-1-alkenes.
    Han LB; Ono Y; Shimada S
    J Am Chem Soc; 2008 Mar; 130(9):2752-3. PubMed ID: 18257571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahydroxydiboron-Mediated Palladium-Catalyzed Transfer Hydrogenation and Deuteriation of Alkenes and Alkynes Using Water as the Stoichiometric H or D Atom Donor.
    Cummings SP; Le TN; Fernandez GE; Quiambao LG; Stokes BJ
    J Am Chem Soc; 2016 May; 138(19):6107-10. PubMed ID: 27135185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis.
    Liu X; Liu B; Liu Q
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6750-6755. PubMed ID: 32118345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective semihydrogenation of alkynes on shape-controlled palladium nanocrystals.
    Chung J; Kim C; Jeong H; Yu T; Binh DH; Jang J; Lee J; Kim BM; Lim B
    Chem Asian J; 2013 May; 8(5):919-25. PubMed ID: 23468235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial hydrogenation of alkynes to cis-olefins by using a novel Pd(0)-polyethyleneimine catalyst.
    Sajiki H; Mori S; Ohkubo T; Ikawa T; Kume A; Maegawa T; Monguchi Y
    Chemistry; 2008; 14(17):5109-11. PubMed ID: 18432625
    [No Abstract]   [Full Text] [Related]  

  • 19. Direct Visualization of Substitutional Li Doping in Supported Pt Nanoparticles and Their Ultra-selective Catalytic Hydrogenation Performance.
    Chen T; Foo C; Zheng JJW; Fang H; Nellist P; Tsang SCE
    Chemistry; 2021 Aug; 27(47):12041-12046. PubMed ID: 34159657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt catalyzed stereodivergent semi-hydrogenation of alkynes using H
    Li K; Khan R; Zhang X; Gao Y; Zhou Y; Tan H; Chen J; Fan B
    Chem Commun (Camb); 2019 May; 55(39):5663-5666. PubMed ID: 31032499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.