These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31139956)

  • 1. Composition Dependence of Structural and Electronic Properties of Quaternary InGaNBi.
    Liang D; Zhu P; Han L; Zhang T; Li Y; Li S; Wang S; Lu P
    Nanoscale Res Lett; 2019 May; 14(1):178. PubMed ID: 31139956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closing the bandgap for III-V nitrides toward mid-infrared and THz applications.
    Lu P; Liang D; Chen Y; Zhang C; Quhe R; Wang S
    Sci Rep; 2017 Sep; 7(1):10594. PubMed ID: 28878271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.
    Ma X; Li D; Zhao S; Li G; Yang K
    Nanoscale Res Lett; 2014; 9(1):580. PubMed ID: 25337061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of bi-axial strain on the structural, electronic and optical properties of photo-catalytic bulk bismuth oxyhalides.
    Dutta S; Das T; Datta S
    Phys Chem Chem Phys; 2017 Dec; 20(1):103-111. PubMed ID: 29205240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and electronic properties of hydrogenated GaBi and InBi honeycomb monolayers with point defects.
    Zhang Y; Ye H; Yu Z; Gao H; Liu Y
    RSC Adv; 2018 Feb; 8(13):7022-7028. PubMed ID: 35540318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and optical properties of quaternary alloy GaAsBiN lattice-matched to GaAs.
    Su M; Li C; Yuan P; Rao F; Jia Y; Wang F
    Opt Express; 2014 Dec; 22(25):30633-40. PubMed ID: 25607011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of ZnO/GaN heterostructured nanowires from first-principles study.
    Zhang Y; Fang DQ; Zhang SL; Huang R; Wen YH
    Phys Chem Chem Phys; 2016 Jan; 18(4):3097-102. PubMed ID: 26741266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principle Electronic Properties of Dilute-P GaN(1-x)P(x) Alloy for Visible Light Emitters.
    Tan CK; Borovac D; Sun W; Tansu N
    Sci Rep; 2016 Apr; 6():24412. PubMed ID: 27076266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First principles study of bismuth alloying effects in GaAs saturable absorber.
    Li D; Yang M; Zhao S; Cai Y; Feng Y
    Opt Express; 2012 May; 20(10):11574-80. PubMed ID: 22565776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable giant spin hall conductivities in a strong spin-orbit semimetal: Bi(1-x) Sb(x).
    Şahin C; Flatté ME
    Phys Rev Lett; 2015 Mar; 114(10):107201. PubMed ID: 25815962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic, structural and electronic properties of metal vacancies in strained AlN/GaN interfaces.
    Kioseoglou J; Pontikis V; Komninou P; Pavloudis T; Chen J; Karakostas T
    J Phys Condens Matter; 2015 Apr; 27(12):125006. PubMed ID: 25693505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin Layers of PdPX (X=S, Se): Two Dimensional Semiconductors for Photocatalytic Water Splitting.
    Jing Y; Ma Y; Wang Y; Li Y; Heine T
    Chemistry; 2017 Oct; 23(55):13612-13616. PubMed ID: 28787095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap.
    Li L; Li P; Lu N; Dai J; Zeng XC
    Adv Sci (Weinh); 2015 Dec; 2(12):1500290. PubMed ID: 27774379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Study on the Stabilities, Electronic and Optical Properties of Ge
    Qian Q; Peng L; Cui Y; Sun L; Du J; Huang Y
    Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30366423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, Optical, and Electronic Properties of Wide Bandgap Perovskites: Experimental and Theoretical Investigations.
    Kumawat NK; Tripathi MN; Waghmare U; Kabra D
    J Phys Chem A; 2016 Jun; 120(22):3917-23. PubMed ID: 27203800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh electron mobility induced by strain engineering in direct semiconductor monolayer Bi
    Lu Z; Wu Y; Xu Y; Ma C; Chen Y; Xu K; Zhang H; Zhu H; Fang Z
    Nanoscale; 2019 Nov; 11(43):20620-20629. PubMed ID: 31641720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Structure and Bandgap Control of 2D GaN Grown on Graphene/Si Heterostructures.
    Wang W; Li Y; Zheng Y; Li X; Huang L; Li G
    Small; 2019 Apr; 15(14):e1802995. PubMed ID: 30821114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.