BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 31140366)

  • 21. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers.
    Zhu Y; Hu J; Yeung K
    Acta Biomater; 2009 Nov; 5(9):3346-57. PubMed ID: 19460466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers.
    Cohn D; Stern T; González MF; Epstein J
    J Biomed Mater Res; 2002 Feb; 59(2):273-81. PubMed ID: 11745563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation, Physicochemical Properties, and Hemocompatibility of the Composites Based on Biodegradable Poly(Ether-Ester-Urethane) and Phosphorylcholine-Containing Copolymer.
    Zhang J; Yang B; Jia Q; Xiao M; Hou Z
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility.
    Guan J; Sacks MS; Beckman EJ; Wagner WR
    Biomaterials; 2004 Jan; 25(1):85-96. PubMed ID: 14580912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Porous (Poly(lactide-
    Savin G; Sastourne-Array O; Caillol S; Bethry A; Assor M; David G; Nottelet B
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ; Colin Sng KB; Li J
    Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro.
    Jones DS; Djokic J; McCoy CP; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of highly elastic biodegradable poly(urethane urea).
    Asplund JO; Bowden T; Mathisen T; Hilborn J
    Biomacromolecules; 2007 Mar; 8(3):905-11. PubMed ID: 17263577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane.
    Xu W; Xiao M; Yuan L; Zhang J; Hou Z
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations.
    Christenson EM; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering.
    González-García DM; Marcos-Fernández Á; Rodríguez-Lorenzo LM; Jiménez-Gallegos R; Vargas-Becerril N; Téllez-Jurado L
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic study on water diffusion in poly(ester urethane) block copolymer matrix.
    Wang W; Jin Y; Su Z
    J Phys Chem B; 2009 Dec; 113(48):15742-6. PubMed ID: 19894687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).
    Chen Z; Cheng S; Xu K
    Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Non-Isocyanate Route to Poly(Ether Urethane): Synthesis and Effect of Chemical Structures of Hard Segment.
    Shen Z; Zheng L; Song D; Liu Y; Li C; Liu J; Xiao Y; Wu S; Zhou T; Zhang B; Lv X; Mei Q
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced hemocompatibility and antibacterial activity of biodegradable poly(ester-urethane) modified with quercetin and phosphorylcholine for durable blood-contacting applications.
    Hao T; Niu G; Zhang H; Zhu Y; Zhang C; Kong F; Xu J; Hou Z
    J Mater Chem B; 2023 Jun; 11(25):5846-5855. PubMed ID: 37291983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: blood compatibility and chemical stability assessments.
    Xie X; Wang R; Li J; Luo L; Wen D; Zhong Y; Zhao C
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):223-41. PubMed ID: 18837450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds.
    Henry JA; Simonet M; Pandit A; Neuenschwander P
    J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.