These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31140493)

  • 1. Nanoscale PDA disassembly in ionic liquids: structure-property relationships underpinning redox tuning.
    Ambrico M; Manini P; Ambrico PF; Ligonzo T; Casamassima G; Franchi P; Valgimigli L; Mezzetta A; Chiappe C; d'Ischia M
    Phys Chem Chem Phys; 2019 Jun; 21(23):12380-12388. PubMed ID: 31140493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Disassembly and Free Radical Reorganization of Polydopamine in Ionic Liquids.
    Manini P; Margari P; Pomelli C; Franchi P; Gentile G; Napolitano A; Valgimigli L; Chiappe C; Ball V; d'Ischia M
    J Phys Chem B; 2016 Nov; 120(46):11942-11950. PubMed ID: 27934397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible Hollow Polydopamine Nanoparticles Loaded Ionic Liquid Enhanced Tumor Microwave Thermal Ablation in Vivo.
    Tan L; Tang W; Liu T; Ren X; Fu C; Liu B; Ren J; Meng X
    ACS Appl Mater Interfaces; 2016 May; 8(18):11237-45. PubMed ID: 27089478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.
    d'Ischia M; Napolitano A; Ball V; Chen CT; Buehler MJ
    Acc Chem Res; 2014 Dec; 47(12):3541-50. PubMed ID: 25340503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Pharmaceutical Ingredient-Ionic Liquids (API-ILs): Nanostructure of the Glassy State Studied by Electron Paramagnetic Resonance Spectroscopy.
    Bakulina OD; Ivanov MY; Alimov DV; Prikhod'ko SA; Adonin NY; Fedin MV
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoconfinement effects on structural anomalies in imidazolium ionic liquids.
    Ivanov MY; Poryvaev AS; Polyukhov DM; Prikhod'ko SA; Adonin NY; Fedin MV
    Nanoscale; 2020 Dec; 12(46):23480-23487. PubMed ID: 33174581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties.
    Della Vecchia NF; Luchini A; Napolitano A; D'Errico G; Vitiello G; Szekely N; d'Ischia M; Paduano L
    Langmuir; 2014 Aug; 30(32):9811-8. PubMed ID: 25066905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces.
    An R; Laaksonen A; Wu M; Zhu Y; Shah FU; Lu X; Ji X
    Nanoscale; 2022 Aug; 14(31):11098-11128. PubMed ID: 35876154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solvation of nitroxide radicals in ionic liquids studied by high-field EPR spectroscopy.
    Akdogan Y; Heller J; Zimmermann H; Hinderberger D
    Phys Chem Chem Phys; 2010 Jul; 12(28):7874-82. PubMed ID: 20502835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Polydopamine (PDA) Meets π-π Interactions: An Interface-Directed Coassembly Approach for Mesoporous Nanoparticles.
    Chen F; Xing Y; Wang Z; Zheng X; Zhang J; Cai K
    Langmuir; 2016 Nov; 32(46):12119-12128. PubMed ID: 27933877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the immobilization process of Au nanoparticles on TiO2(110) by electrostatic interaction between the surface and ionic liquids.
    Suzuki S; Ohta Y; Kurimoto T; Kuwabata S; Torimoto T
    Phys Chem Chem Phys; 2011 Aug; 13(30):13585-93. PubMed ID: 21731949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications.
    Xie X; Tang J; Xing Y; Wang Z; Ding T; Zhang J; Cai K
    Adv Healthc Mater; 2021 May; 10(9):e2002138. PubMed ID: 33690982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo.
    Liu X; Cao J; Li H; Li J; Jin Q; Ren K; Ji J
    ACS Nano; 2013 Oct; 7(10):9384-95. PubMed ID: 24010584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-Based Surface Modification of ZnO Nanoparticles on Sericin/Polyvinyl Alcohol Composite Film for Antibacterial Application.
    Ai L; Wang Y; Tao G; Zhao P; Umar A; Wang P; He H
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30704137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox modulation of polydopamine surface chemistry: a facile strategy to enhance the intrinsic fluorescence of polydopamine nanoparticles for sensitive and selective detection of Fe
    Yin H; Zhang K; Wang L; Zhou K; Zeng J; Gao D; Xia Z; Fu Q
    Nanoscale; 2018 Sep; 10(37):18064-18073. PubMed ID: 30229779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles in ionic liquids: interactions and organization.
    He Z; Alexandridis P
    Phys Chem Chem Phys; 2015 Jul; 17(28):18238-61. PubMed ID: 26120610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge trapping in imidazolium ionic liquids.
    Shkrob IA; Wishart JF
    J Phys Chem B; 2009 Apr; 113(16):5582-92. PubMed ID: 19323543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Engineered Polydopamine Particles as an Efficient Support for Catalytic Applications.
    Liu Y; Li G; Qin R; Chen D
    Langmuir; 2016 Dec; 32(51):13675-13686. PubMed ID: 27959568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine.
    Yao J; Wu T; Sun Y; Ma Z; Liu M; Zhang Y; Yao S
    Talanta; 2019 Apr; 195():265-271. PubMed ID: 30625542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities.
    Seto K; Nakayama T; Uno B
    J Phys Chem B; 2013 Sep; 117(37):10834-45. PubMed ID: 24021019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.