These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31140525)

  • 1. Investigating the detection limit of subsurface holes under graphite with atomic force acoustic microscopy.
    Yip K; Cui T; Sun Y; Filleter T
    Nanoscale; 2019 Jun; 11(22):10961-10967. PubMed ID: 31140525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsurface imaging of flexible circuits via contact resonance atomic force microscopy.
    Wang W; Ma C; Chen Y; Zheng L; Liu H; Chu J
    Beilstein J Nanotechnol; 2019; 10():1636-1647. PubMed ID: 31467825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate detection of subsurface microcavity by bimodal atomic force microscopy.
    Lou P; Bi Z; Shang G
    Nanotechnology; 2024 Jun; 35(35):. PubMed ID: 38838645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy.
    Yip K; Cui T; Filleter T
    Rev Sci Instrum; 2020 Jun; 91(6):063703. PubMed ID: 32611036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of buried reference structures by use of atomic force acoustic microscopy.
    Striegler A; Koehler B; Bendjus B; Roellig M; Kopycinska-Mueller M; Meyendorf N
    Ultramicroscopy; 2011 Jul; 111(8):1405-16. PubMed ID: 21864784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing subsurface defects in graphite by acoustic atomic force microscopy.
    Wang T; Ma C; Hu W; Chen Y; Chu J
    Microsc Res Tech; 2017 Jan; 80(1):66-74. PubMed ID: 27087240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsurface imaging of rigid particles buried in a polymer matrix based on atomic force microscopy mechanical sensing.
    Zhang W; Chen Y; Hou Y; Wang W; Liu H; Zheng L
    Ultramicroscopy; 2019 Dec; 207():112832. PubMed ID: 31473533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linearizing the frequency-stiffness relation in contact resonance atomic force microscopy for facilitated mechanical characterization.
    Wang W; Zhang W; Chen Y
    Microsc Res Tech; 2022 Jun; 85(6):2123-2130. PubMed ID: 35122360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy.
    Kimura K; Kobayashi K; Yao A; Yamada H
    Nanotechnology; 2016 Oct; 27(41):415707. PubMed ID: 27607548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution.
    Perrino AP; Ryu YK; Amo CA; Morales MP; Garcia R
    Nanotechnology; 2016 Jul; 27(27):275703. PubMed ID: 27232523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.
    Kimura K; Kobayashi K; Matsushige K; Yamada H
    Ultramicroscopy; 2013 Oct; 133():41-9. PubMed ID: 23770541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites.
    Killgore JP; Kelly JY; Stafford CM; Fasolka MJ; Hurley DC
    Nanotechnology; 2011 Apr; 22(17):175706. PubMed ID: 21411923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive force between graphene nanoscale flakes and living biological cells.
    Al Faouri R; Henry R; Biris AS; Sleezer R; Salamo GJ
    J Appl Toxicol; 2017 Nov; 37(11):1346-1353. PubMed ID: 28485473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsurface imaging of two-dimensional materials at the nanoscale.
    Dinelli F; Pingue P; Kay ND; Kolosov OV
    Nanotechnology; 2017 Feb; 28(8):085706. PubMed ID: 28117307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of SU-8 photoresist cross-linking process by atomic force acoustic microscopy.
    Zhao Y; Liu Y; Wang Z; Wang L; Li L; Hou F; Song Z; Weng Z
    J Microsc; 2019 Dec; 276(3):136-144. PubMed ID: 31769508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thickness Resonance Acoustic Microscopy for Nanomechanical Subsurface Imaging.
    Shekhawat GS; Srivastava AK; Dravid VP; Balogun O
    ACS Nano; 2017 Jun; 11(6):6139-6145. PubMed ID: 28514593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of acoustic coupling for bottom actuated scattering based subsurface scanning probe microscopy.
    van Neer PLMJ; Quesson B; van Es MH; van Riel M; Hatakeyama K; Mohtashami A; Piras D; Duivenoorde T; Lans M; Sadeghian H
    Rev Sci Instrum; 2019 Jul; 90(7):073705. PubMed ID: 31370474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A macroscopic non-destructive testing system based on the cantilever-sample contact resonance.
    Fu J; Lin L; Zhou X; Li Y; Li F
    Rev Sci Instrum; 2012 Dec; 83(12):123707. PubMed ID: 23277996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.
    Yao A; Kobayashi K; Nosaka S; Kimura K; Yamada H
    Sci Rep; 2017 Feb; 7():42718. PubMed ID: 28210001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.
    Rubino S; Akhtar S; Leifer K
    Microsc Microanal; 2016 Feb; 22(1):250-6. PubMed ID: 26915000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.