BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31140779)

  • 1. Small Molecule Inhibits Metal-Dependent and -Independent Multifaceted Toxicity of Alzheimer's Disease.
    Samanta S; Rajasekhar K; Babagond V; Govindaraju T
    ACS Chem Neurosci; 2019 Aug; 10(8):3611-3621. PubMed ID: 31140779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Multifunctional Modulators Inhibit Multifaceted Aβ Toxicity and Prevent Mitochondrial Damage.
    Rajasekhar K; Mehta K; Govindaraju T
    ACS Chem Neurosci; 2018 Jun; 9(6):1432-1440. PubMed ID: 29557650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer's disease.
    Savelieff MG; DeToma AS; Derrick JS; Lim MH
    Acc Chem Res; 2014 Aug; 47(8):2475-82. PubMed ID: 25080056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-β Aggregation, Oxidative Stress, and Inflammation in Alzheimer's Disease.
    Nam E; Derrick JS; Lee S; Kang J; Han J; Lee SJC; Chung SW; Lim MH
    ACS Chem Neurosci; 2018 Nov; 9(11):2655-2666. PubMed ID: 29782798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity.
    Rajasekhar K; Madhu C; Govindaraju T
    ACS Chem Neurosci; 2016 Sep; 7(9):1300-10. PubMed ID: 27355515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox chemistry of the Alzheimer's disease amyloid beta peptide.
    Smith DG; Cappai R; Barnham KJ
    Biochim Biophys Acta; 2007 Aug; 1768(8):1976-90. PubMed ID: 17433250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper and heme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROS compounds.
    Chassaing S; Collin F; Dorlet P; Gout J; Hureau C; Faller P
    Curr Top Med Chem; 2012; 12(22):2573-95. PubMed ID: 23339309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease.
    Han J; Du Z; Lim MH
    Acc Chem Res; 2021 Oct; 54(20):3930-3940. PubMed ID: 34606227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease.
    Derrick JS; Kerr RA; Korshavn KJ; McLane MJ; Kang J; Nam E; Ramamoorthy A; Ruotolo BT; Lim MH
    Inorg Chem; 2016 May; 55(10):5000-13. PubMed ID: 27119456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-active metals, oxidative stress, and Alzheimer's disease pathology.
    Huang X; Moir RD; Tanzi RE; Bush AI; Rogers JT
    Ann N Y Acad Sci; 2004 Mar; 1012():153-63. PubMed ID: 15105262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of oxidative stress and other pathologies in Alzheimer's disease.
    Simunkova M; Alwasel SH; Alhazza IM; Jomova K; Kollar V; Rusko M; Valko M
    Arch Toxicol; 2019 Sep; 93(9):2491-2513. PubMed ID: 31440798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationally Designed Molecules Synergistically Modulate Multifaceted Aβ Toxicity, Microglial Activation, and Neuroinflammation.
    Ramesh M; Balachandra C; Andhare P; Govindaraju T
    ACS Chem Neurosci; 2022 Jul; 13(14):2209-2221. PubMed ID: 35759686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triazole-Peptide Conjugate as a Modulator of Aβ-Aggregation, Metal-Mediated Aβ-Aggregation, and Cytotoxicity.
    Mann S; Kaur A; Kaur A; Priyadarshi N; Goyal B; Singhal NK; Goyal D
    ACS Chem Neurosci; 2023 May; 14(9):1631-1645. PubMed ID: 37040092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of multifunctional antioxidants on mitochondrial dysfunction and amyloid-β metal dyshomeostasis.
    Kawada H; Blessing K; Kiyota T; Woolman T; Winchester L; Kador PF
    J Alzheimers Dis; 2015; 44(1):297-307. PubMed ID: 25227315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta.
    Atwood CS; Obrenovich ME; Liu T; Chan H; Perry G; Smith MA; Martins RN
    Brain Res Brain Res Rev; 2003 Sep; 43(1):1-16. PubMed ID: 14499458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heterogeneous nature of Cu2+ interactions with Alzheimer's amyloid-β peptide.
    Drew SC; Barnham KJ
    Acc Chem Res; 2011 Nov; 44(11):1146-55. PubMed ID: 21714485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rodent Abeta(1-42) exhibits oxidative stress properties similar to those of human Abeta(1-42): Implications for proposed mechanisms of toxicity.
    Boyd-Kimball D; Sultana R; Mohmmad-Abdul H; Butterfield DA
    J Alzheimers Dis; 2004 Oct; 6(5):515-25. PubMed ID: 15505374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and the amyloid beta peptide in Alzheimer's disease.
    Cheignon C; Tomas M; Bonnefont-Rousselot D; Faller P; Hureau C; Collin F
    Redox Biol; 2018 Apr; 14():450-464. PubMed ID: 29080524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.
    Butterfield DA
    Free Radic Res; 2002 Dec; 36(12):1307-13. PubMed ID: 12607822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines.
    Wang SW; Wang YJ; Su YJ; Zhou WW; Yang SG; Zhang R; Zhao M; Li YN; Zhang ZP; Zhan DW; Liu RT
    Neurotoxicology; 2012 Jun; 33(3):482-90. PubMed ID: 22445961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.