BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31140781)

  • 1. Highly Specific Cys Fluorescence Probe for Living Mouse Brain Imaging via Evading Reaction with Other Biothiols.
    Zhang Y; Wang X; Bai X; Li P; Su D; Zhang W; Zhang W; Tang B
    Anal Chem; 2019 Jul; 91(13):8591-8594. PubMed ID: 31140781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe.
    Li S; Song D; Huang W; Li Z; Liu Z
    Anal Chem; 2020 Feb; 92(3):2802-2808. PubMed ID: 31903746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells.
    Cai S; Liu C; Jiao X; Zhao L; Zeng X
    J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NIR two-photon fluorescent probe for biothiol detection and imaging of living cells in vivo.
    Xia X; Qian Y
    Analyst; 2018 Oct; 143(21):5218-5224. PubMed ID: 30270379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells.
    Fan L; Zhang W; Wang X; Dong W; Tong Y; Dong C; Shuang S
    Analyst; 2019 Jan; 144(2):439-447. PubMed ID: 30420979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation.
    Liu SR; Chang CY; Wu SP
    Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria.
    Niu W; Guo L; Li Y; Shuang S; Dong C; Wong MS
    Anal Chem; 2016 Feb; 88(3):1908-14. PubMed ID: 26717855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanide and biothiols recognition properties of a coumarin chalcone compound as red fluorescent probe.
    Sun Y; Shan Y; Sun N; Li Z; Wu X; Guan R; Cao D; Zhao S; Zhao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():514-519. PubMed ID: 30064116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells.
    Wang XD; Fan L; Ge JY; Li F; Zhang CH; Wang JJ; Shuang SM; Dong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117175. PubMed ID: 31158770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent probe for biothiols based on the conjugate addition of thiols to α,β-unsaturated ester.
    Du J; Yang Z; Qi H; Yang XF
    Luminescence; 2011; 26(6):486-93. PubMed ID: 20960576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fluorescent probe derived from naphthalimide for cysteine detection and imaging in living cells.
    Liu Y; Liu Y; Liu W; Liang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():509-15. PubMed ID: 25240143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells.
    Wang J; Zhou C; Zhang J; Zhu X; Liu X; Wang Q; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():31-37. PubMed ID: 27203232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A red-emission fluorescence probe based on 1,4-addition reaction mechanism for the detection of biothiols in vitro and in vivo.
    Hu Y; Shang Z; Gu P; He G; Zhang R; Meng Q; Zhang Z
    Anal Sci; 2022 Mar; 38(3):505-514. PubMed ID: 35359268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly specific monitoring and imaging of endogenous and exogenous cysteine in living cells.
    Song X; Yang Y; Ru J; Wang Y; Qiu F; Feng Y; Zhang G; Liu W
    Talanta; 2019 Nov; 204():561-568. PubMed ID: 31357334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence probe for selectively monitoring biothiols within cells and mouse depression diagnosis.
    Ma J; Xu Y; Kong X; Wei Y; Meng D; Zhang Z
    Biomed Pharmacother; 2022 Oct; 154():113647. PubMed ID: 36067570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish.
    He L; Yang X; Xu K; Lin W
    Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Acetylcholinesterase in Stress-Induced Depression Phenotypes by Two-Photon Fluorescence Imaging in the Mouse Brain.
    Wang X; Li P; Ding Q; Wu C; Zhang W; Tang B
    J Am Chem Soc; 2019 Feb; 141(5):2061-2068. PubMed ID: 30638380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission.
    Xu S; Zhou J; Dong X; Zhao W; Zhu Q
    Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel.
    Guo X; Zhang X; Wang S; Li S; Hu R; Li Y; Yang G
    Anal Chim Acta; 2015 Apr; 869():81-8. PubMed ID: 25818143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Probe for Simultaneous Discrimination of GSH, Cys, and SO
    Jia L; Niu LY; Yang QZ
    Anal Chem; 2020 Aug; 92(15):10800-10806. PubMed ID: 32605361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.