BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31140806)

  • 1. Computational Study of the Formation of C8, C5, and C4 Guanine:Lysine Adducts via Oxidation of Guanine by Sulfate Radical Anion.
    Thapa B; Hebert SP; Munk BH; Burrows CJ; Schlegel HB
    J Phys Chem A; 2019 Jun; 123(24):5150-5163. PubMed ID: 31140806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer.
    Thapa B; Munk BH; Burrows CJ; Schlegel HB
    Chem Res Toxicol; 2016 Sep; 29(9):1396-409. PubMed ID: 27479718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts.
    Xu X; Muller JG; Ye Y; Burrows CJ
    J Am Chem Soc; 2008 Jan; 130(2):703-9. PubMed ID: 18081286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Oxidation of Guanine by Singlet Oxygen (
    Thapa B; Munk BH; Burrows CJ; Schlegel HB
    Chemistry; 2017 Apr; 23(24):5804-5813. PubMed ID: 28249102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih).
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Nov; 32(11):2295-2304. PubMed ID: 31571479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical.
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Jan; 32(1):195-210. PubMed ID: 30592213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide.
    Perrier S; Hau J; Gasparutto D; Cadet J; Favier A; Ravanat JL
    J Am Chem Soc; 2006 May; 128(17):5703-10. PubMed ID: 16637637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exploration of mechanisms for the transformation of 8-oxoguanine to guanidinohydantoin and spiroiminodihydantoin by density functional theory.
    Munk BH; Burrows CJ; Schlegel HB
    J Am Chem Soc; 2008 Apr; 130(15):5245-56. PubMed ID: 18355018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
    Joffe A; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2003 Dec; 16(12):1528-38. PubMed ID: 14680366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Investigation into the Oxidation of Guanine to Form Imidazolone (Iz) and Related Degradation Products.
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2020 Apr; 33(4):1010-1027. PubMed ID: 32119534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Kinetics, Product Branching, and Potential Energy Surfaces of
    Sun Y; Tsai M; Zhou W; Lu W; Liu J
    J Phys Chem B; 2019 Dec; 123(49):10410-10423. PubMed ID: 31718186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.
    Rokhlenko Y; Geacintov NE; Shafirovich V
    J Am Chem Soc; 2012 Mar; 134(10):4955-62. PubMed ID: 22329445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.
    Joffe A; Mock S; Yun BH; Kolbanovskiy A; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2003 Aug; 16(8):966-73. PubMed ID: 12924924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine.
    Roginskaya M; Mohseni R; Ampadu-Boateng D; Razskazovskiy Y
    Free Radic Res; 2016 Jul; 50(7):756-66. PubMed ID: 27043476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of base sequence and deprotonation of Guanine cation radical in DNA.
    Kobayashi K; Yamagami R; Tagawa S
    J Phys Chem B; 2008 Aug; 112(34):10752-7. PubMed ID: 18680360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of mechanisms for the transformation of 8-hydroxy guanine radical to FAPyG by density functional theory.
    Munk BH; Burrows CJ; Schlegel HB
    Chem Res Toxicol; 2007 Mar; 20(3):432-44. PubMed ID: 17316026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides.
    Shafirovich V; Dourandin A; Huang W; Geacintov NE
    J Biol Chem; 2001 Jul; 276(27):24621-6. PubMed ID: 11320091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of guanine, its anions, and radicals with lysine in different charge states.
    Jena NR; Mishra PC
    J Phys Chem B; 2007 May; 111(19):5418-24. PubMed ID: 17432899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.
    Crean C; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2008 Feb; 21(2):358-73. PubMed ID: 18159932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.