These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31140895)

  • 1. Application of Bayesian networks in determining nanoparticle-induced cellular outcomes using transcriptomics.
    Furxhi I; Murphy F; Poland CA; Sheehan B; Mullins M; Mantecca P
    Nanotoxicology; 2019 Aug; 13(6):827-848. PubMed ID: 31140895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index.
    Furxhi I; Murphy F; Mullins M; Poland CA
    Toxicol Lett; 2019 Sep; 312():157-166. PubMed ID: 31102714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints.
    Afantitis A; Melagraki G; Tsoumanis A; Valsami-Jones E; Lynch I
    Nanotoxicology; 2018 Dec; 12(10):1148-1165. PubMed ID: 30182778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding nanoparticle cellular entry: A physicochemical perspective.
    Beddoes CM; Case CP; Briscoe WH
    Adv Colloid Interface Sci; 2015 Apr; 218():48-68. PubMed ID: 25708746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Logistic Regression and Bayesian Networks for Risk Prediction of Breast Cancer Recurrence.
    Witteveen A; Nane GF; Vliegen IMH; Siesling S; IJzerman MJ
    Med Decis Making; 2018 Oct; 38(7):822-833. PubMed ID: 30132386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotoxicology data for
    Furxhi I; Murphy F; Mullins M; Arvanitis A; Poland CA
    Nanotoxicology; 2020 Jun; 14(5):612-637. PubMed ID: 32100604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field.
    Pisani C; Gaillard JC; Nouvel V; Odorico M; Armengaud J; Prat O
    BMC Genomics; 2015 Apr; 16(1):315. PubMed ID: 25895662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.
    Gogoshin G; Boerwinkle E; Rodin AS
    J Comput Biol; 2017 Apr; 24(4):340-356. PubMed ID: 27681505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing adverse outcome pathways on silver nanoparticle-induced reproductive toxicity via oxidative stress in the nematode Caenorhabditis elegans using a Bayesian network model.
    Jeong J; Song T; Chatterjee N; Choi I; Cha YK; Choi J
    Nanotoxicology; 2018 Dec; 12(10):1182-1197. PubMed ID: 30663905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of Nanomaterials: Using Nanotoxicology to Address the Safety Concerns of Nanoparticles.
    Saifi MA; Khan W; Godugu C
    Pharm Nanotechnol; 2018; 6(1):3-16. PubMed ID: 29065848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomedical knowledge discovery with topological constraints modeling in Bayesian networks: a preliminary report.
    Li G; Leong TY
    Stud Health Technol Inform; 2007; 129(Pt 1):560-5. PubMed ID: 17911779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment.
    Marvin HJ; Bouzembrak Y; Janssen EM; van der Zande M; Murphy F; Sheehan B; Mullins M; Bouwmeester H
    Nanotoxicology; 2017 Feb; 11(1):123-133. PubMed ID: 28044458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
    Kalet AM; Doctor JN; Gennari JH; Phillips MH
    Med Phys; 2017 Aug; 44(8):4350-4359. PubMed ID: 28500765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting In Vitro Neurotoxicity Induced by Nanoparticles Using Machine Learning.
    Furxhi I; Murphy F
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors.
    Ren J; Jenkinson I; Wang J; Xu DL; Yang JB
    J Safety Res; 2008; 39(1):87-100. PubMed ID: 18325420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine.
    Arora P; Boyne D; Slater JJ; Gupta A; Brenner DR; Druzdzel MJ
    Value Health; 2019 Apr; 22(4):439-445. PubMed ID: 30975395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future.
    Kyrimi E; McLachlan S; Dube K; Neves MR; Fahmi A; Fenton N
    Artif Intell Med; 2021 Jul; 117():102108. PubMed ID: 34127238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.
    Kettler K; Veltman K; van de Meent D; van Wezel A; Hendriks AJ
    Environ Toxicol Chem; 2014 Mar; 33(3):481-92. PubMed ID: 24273100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.