BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31140930)

  • 1. Deep Sequencing Reveals Early Reprogramming of
    Zhao C; Wang H; Lu Y; Hu J; Qu L; Li Z; Wang D; He Y; Valls M; Coll NS; Chen Q; Lu H
    Mol Plant Microbe Interact; 2019 Jul; 32(7):813-827. PubMed ID: 31140930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Profiling of Dynamic Alternative Splicing Modulation in Arabidopsis Root upon
    Qin N; Zhang R; Zhang M; Niu Y; Fu S; Wang Y; Wang D; Chen Y; Zhao C; Chen Q; Lu H
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32942673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type III Secretion-Dependent and -Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots.
    Lu H; Lema A S; Planas-Marquès M; Alonso-Díaz A; Valls M; Coll NS
    Mol Plant Microbe Interact; 2018 Jan; 31(1):175-184. PubMed ID: 28840786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum.
    Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H
    BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Analysis Reveals New Insights into the Bacterial Wilt Resistance Mechanism Mediated by Silicon in Tomato.
    Jiang N; Fan X; Lin W; Wang G; Cai K
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30754671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum.
    Alonso-Díaz A; Satbhai SB; de Pedro-Jové R; Berry HM; Göschl C; Argueso CT; Novak O; Busch W; Valls M; Coll NS
    J Exp Bot; 2021 Mar; 72(7):2727-2740. PubMed ID: 33475698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum.
    Hu J; Barlet X; Deslandes L; Hirsch J; Feng DX; Somssich I; Marco Y
    PLoS One; 2008 Jul; 3(7):e2589. PubMed ID: 18596930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum.
    Takahashi H; Nakaho K; Ishihara T; Ando S; Wada T; Kanayama Y; Asano S; Yoshida S; Tsushima S; Hyakumachi M
    Plant Cell Rep; 2014 Jan; 33(1):99-110. PubMed ID: 24121643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato.
    French E; Kim BS; Rivera-Zuluaga K; Iyer-Pascuzzi AS
    Mol Plant Microbe Interact; 2018 Apr; 31(4):432-444. PubMed ID: 29153016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii.
    Zuluaga AP; Solé M; Lu H; Góngora-Castillo E; Vaillancourt B; Coll N; Buell CR; Valls M
    BMC Genomics; 2015 Mar; 16(1):246. PubMed ID: 25880642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomato Root Transformation Followed by Inoculation with Ralstonia Solanacearum for Straightforward Genetic Analysis of Bacterial Wilt Disease.
    Morcillo RJL; Zhao A; Tamayo-Navarrete MI; García-Garrido JM; Macho AP
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual RNA-seq Reveals the Global Transcriptome Dynamics of
    Du H; Yang J; Chen B; Zhang X; Xu X; Wen C; Geng S
    Phytopathology; 2022 Mar; 112(3):630-642. PubMed ID: 34346759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism.
    Denancé N; Ranocha P; Oria N; Barlet X; Rivière MP; Yadeta KA; Hoffmann L; Perreau F; Clément G; Maia-Grondard A; van den Berg GC; Savelli B; Fournier S; Aubert Y; Pelletier S; Thomma BP; Molina A; Jouanin L; Marco Y; Goffner D
    Plant J; 2013 Jan; 73(2):225-39. PubMed ID: 22978675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection.
    Prasath D; Karthika R; Habeeba NT; Suraby EJ; Rosana OB; Shaji A; Eapen SJ; Deshpande U; Anandaraj M
    PLoS One; 2014; 9(6):e99731. PubMed ID: 24940878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling.
    Feng DX; Tasset C; Hanemian M; Barlet X; Hu J; Trémousaygue D; Deslandes L; Marco Y
    New Phytol; 2012 Jun; 194(4):1035-1045. PubMed ID: 22432714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of lateral root structure formation on petunia roots: A novel effect of GMI1000 Ralstonia solanacearum infection impaired in Hrp mutants.
    Zolobowska L; Van Gijsegem F
    Mol Plant Microbe Interact; 2006 Jun; 19(6):597-606. PubMed ID: 16776293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest).
    Jiang Y; Huang M; Zhang M; Lan J; Wang W; Tao X; Liu Y
    Plant Physiol Biochem; 2018 Nov; 132():547-556. PubMed ID: 30316164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes.
    Liu Y; Liu Q; Tang Y; Ding W
    Biochem Biophys Res Commun; 2019 Jan; 508(3):940-945. PubMed ID: 30545635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Transcriptome Profiling Reveals Defense-Related Genes Against
    Pan X; Chen J; Yang A; Yuan Q; Zhao W; Xu T; Chen B; Ren M; Geng R; Zong Z; Ma Z; Huang Z; Zhang Z
    Front Plant Sci; 2021; 12():767882. PubMed ID: 34970284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomes of
    Puigvert M; Guarischi-Sousa R; Zuluaga P; Coll NS; Macho AP; Setubal JC; Valls M
    Front Plant Sci; 2017; 8():370. PubMed ID: 28373879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.