BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31141125)

  • 1. CNet: a multi-omics approach to detecting clinically associated, combinatory genomic signatures.
    Jia P; Pei G; Zhao Z
    Bioinformatics; 2019 Dec; 35(24):5207-5215. PubMed ID: 31141125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. deTS: tissue-specific enrichment analysis to decode tissue specificity.
    Pei G; Dai Y; Zhao Z; Jia P
    Bioinformatics; 2019 Oct; 35(19):3842-3845. PubMed ID: 30824912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data.
    Li J; Lu Q; Wen Y
    Bioinformatics; 2020 Mar; 36(6):1785-1794. PubMed ID: 31693075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes.
    Nguyen ND; Jin T; Wang D
    Bioinformatics; 2021 Jul; 37(12):1772-1775. PubMed ID: 33031552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REALGAR: a web app of integrated respiratory omics data.
    Kan M; Diwadkar AR; Saxena S; Shuai H; Joo J; Himes BE
    Bioinformatics; 2022 Sep; 38(18):4442-4445. PubMed ID: 35863045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.
    Glinsky GV
    Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RERconverge: an R package for associating evolutionary rates with convergent traits.
    Kowalczyk A; Meyer WK; Partha R; Mao W; Clark NL; Chikina M
    Bioinformatics; 2019 Nov; 35(22):4815-4817. PubMed ID: 31192356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration.
    Wang Z; Wei P
    Bioinformatics; 2021 Apr; 36(22-23):5439-5447. PubMed ID: 33258948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified methods for feature selection in large-scale genomic studies with censored survival outcomes.
    Spirko-Burns L; Devarajan K
    Bioinformatics; 2020 Jun; 36(11):3409-3417. PubMed ID: 32154833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coordinate descent approach for sparse Bayesian learning in high dimensional QTL mapping and genome-wide association studies.
    Wang M; Xu S
    Bioinformatics; 2019 Nov; 35(21):4327-4335. PubMed ID: 31081037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRESM: personalized reference editor for somatic mutation discovery in cancer genomics.
    Cao C; Mak L; Jin G; Gordon P; Ye K; Long Q
    Bioinformatics; 2019 May; 35(9):1445-1452. PubMed ID: 30247633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using association signal annotations to boost similarity network fusion.
    Ruan P; Wang Y; Shen R; Wang S
    Bioinformatics; 2019 Oct; 35(19):3718-3726. PubMed ID: 30863842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioinformatics workflow for detecting signatures of selection in genomic data.
    Cadzow M; Boocock J; Nguyen HT; Wilcox P; Merriman TR; Black MA
    Front Genet; 2014; 5():293. PubMed ID: 25206364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways.
    Shen Y; Rahman M; Piccolo SR; Gusenleitner D; El-Chaar NN; Cheng L; Monti S; Bild AH; Johnson WE
    Bioinformatics; 2015 Jun; 31(11):1745-53. PubMed ID: 25617415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cgmisc: enhanced genome-wide association analyses and visualization.
    Kierczak M; Jabłońska J; Forsberg SK; Bianchi M; Tengvall K; Pettersson M; Scholz V; Meadows JR; Jern P; Carlborg Ö; Lindblad-Toh K
    Bioinformatics; 2015 Dec; 31(23):3830-1. PubMed ID: 26249815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.