These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31141922)

  • 1. Milk Protein Fractionation by Means of Spiral-Wound Microfiltration Membranes: Effect of the Pressure Adjustment Mode and Temperature on Flux and Protein Permeation.
    Hartinger M; Heidebrecht HJ; Schiffer S; Dumpler J; Kulozik U
    Foods; 2019 May; 8(6):. PubMed ID: 31141922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Spacer Design and Module Geometry on the Filtration Performance during Skim Milk Microfiltration with Flat Sheet and Spiral-Wound Membranes.
    Hartinger M; Napiwotzki J; Schmid EM; Hoffmann D; Kurz F; Kulozik U
    Membranes (Basel); 2020 Mar; 10(4):. PubMed ID: 32225043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical Concepts for the Investigation of Spatial Effects in Spiral-Wound Microfiltration Membranes.
    Hartinger M; Heidebrecht HJ; Schiffer S; Dumpler J; Kulozik U
    Membranes (Basel); 2019 Jul; 9(7):. PubMed ID: 31277447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65°C.
    Hurt EE; Adams MC; Barbano DM
    J Dairy Sci; 2015 Feb; 98(2):765-80. PubMed ID: 25497798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes.
    Beckman SL; Barbano DM
    J Dairy Sci; 2013 Oct; 96(10):6199-212. PubMed ID: 23891300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of casein on flux and passage of serum proteins during microfiltration using polymeric spiral-wound membranes at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2013 Apr; 96(4):2048-2060. PubMed ID: 23415517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.
    Piry A; Heino A; Kühnl W; Grein T; Ripperger S; Kulozik U
    J Dairy Sci; 2012 Apr; 95(4):1590-602. PubMed ID: 22459807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2014 May; 97(5):2619-32. PubMed ID: 24612815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ measurement of deposit layer formation during skim milk filtration by MRI.
    Schork N; Schuhmann S; Nirschl H; Guthausen G
    Magn Reson Chem; 2019 Sep; 57(9):738-748. PubMed ID: 30604888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Pre-Heating Prior to Low Temperature 0.1 µm-Microfiltration of Milk on Casein-Whey Protein Fractionation.
    Schiffer S; Adekunle BT; Matyssek A; Hartinger M; Kulozik U
    Foods; 2021 May; 10(5):. PubMed ID: 34068990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum protein removal from skim milk with a 3-stage, 3× ceramic Isoflux membrane process at 50°C.
    Adams MC; Barbano DM
    J Dairy Sci; 2013 Apr; 96(4):2020-2034. PubMed ID: 23415524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux and transmission of β-casein during cold microfiltration of skim milk subjected to different heat treatments.
    Zulewska J; Kowalik J; Dec B
    J Dairy Sci; 2018 Dec; 101(12):10831-10843. PubMed ID: 30268614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Characterisation of Deposit Layer during Milk Protein Microfiltration by Means of
    Schopf R; Schork N; Amling E; Nirschl H; Guthausen G; Kulozik U
    Membranes (Basel); 2020 Mar; 10(4):. PubMed ID: 32244407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physicochemical investigation of membrane fouling in cold microfiltration of skim milk.
    Tan TJ; Wang D; Moraru CI
    J Dairy Sci; 2014; 97(8):4759-71. PubMed ID: 24881794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.
    Beckman SL; Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2010 Oct; 93(10):4506-17. PubMed ID: 20854984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7527-43. PubMed ID: 26298765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk.
    Fritsch J; Moraru CI
    J Dairy Sci; 2008 Oct; 91(10):3744-60. PubMed ID: 18832196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Temperature-Dependent Bacterial Growth during Milk Protein Fractionation by Means of 0.1 µM Microfiltration on the Length of Possible Production Cycle Times.
    Schiffer S; Kulozik U
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33147828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7483-97. PubMed ID: 26298759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.