These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Visualization of Charge Dynamics when Water Droplets Bounce on a Hydrophobic Surface. Li X; Zhang L; Feng Y; Zhang Y; Xu H; Zhou F; Wang D ACS Nano; 2023 Dec; 17(23):23977-23988. PubMed ID: 38010973 [TBL] [Abstract][Full Text] [Related]
6. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous Wetting Induced by Contact-Electrification at Liquid-Solid Interface. Tang Z; Yang D; Guo H; Lin S; Wang ZL Adv Mater; 2024 Jun; 36(25):e2400451. PubMed ID: 38529563 [TBL] [Abstract][Full Text] [Related]
8. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Shigorina E; Kordilla J; Tartakovsky AM Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900 [TBL] [Abstract][Full Text] [Related]
9. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Sun Y; Huang X; Soh S Angew Chem Int Ed Engl; 2016 Aug; 55(34):9956-60. PubMed ID: 27417888 [TBL] [Abstract][Full Text] [Related]
10. Triboelectric Energy Harvesting of the Superhydrophobic Coating from Dropping Water. Niu J; Xu W; Tian K; He G; Huang Z; Wang Q Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32867084 [TBL] [Abstract][Full Text] [Related]
11. Study of Contact Electrification at Liquid-Gas Interface. Wang F; Yang P; Tao X; Shi Y; Li S; Liu Z; Chen X; Wang ZL ACS Nano; 2021 Nov; 15(11):18206-18213. PubMed ID: 34677929 [TBL] [Abstract][Full Text] [Related]
12. Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Sun M; Lu Q; Wang ZL; Huang B Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951 [TBL] [Abstract][Full Text] [Related]
13. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Jung YC; Bhushan B J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651 [TBL] [Abstract][Full Text] [Related]
14. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface. Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417 [TBL] [Abstract][Full Text] [Related]
15. Droplet detachment by air flow for microstructured superhydrophobic surfaces. Hao P; Lv C; Yao Z Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076 [TBL] [Abstract][Full Text] [Related]
16. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
17. Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials. Šutka A; Mālnieks K; Lapčinskis L; Timusk M; Kalniņš K; Kovaļovs A; Bitenieks J; Knite M; Stevens D; Grunlan J Phys Chem Chem Phys; 2020 Jun; 22(23):13299-13305. PubMed ID: 32507872 [TBL] [Abstract][Full Text] [Related]
18. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
19. Analysis of droplet evaporation on a superhydrophobic surface. McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771 [TBL] [Abstract][Full Text] [Related]