These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31142118)
21. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D; Lee C; Nam Y Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626 [TBL] [Abstract][Full Text] [Related]
22. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
23. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface. Boinovich L; Emelyanenko AM Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023 [TBL] [Abstract][Full Text] [Related]
24. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
25. Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. Zhan F; Wang AC; Xu L; Lin S; Shao J; Chen X; Wang ZL ACS Nano; 2020 Dec; 14(12):17565-17573. PubMed ID: 33232122 [TBL] [Abstract][Full Text] [Related]
26. How Surface and Substrate Chemistry Affect Slide Electrification. Leibauer B; Pop-Georgievski O; Sosa MD; Dong Y; Tremel W; Butt HJ; Steffen W J Am Chem Soc; 2024 Apr; 146(14):10073-10083. PubMed ID: 38563738 [TBL] [Abstract][Full Text] [Related]
27. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces. Bahadur V; Garimella SV Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067 [TBL] [Abstract][Full Text] [Related]
28. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650 [TBL] [Abstract][Full Text] [Related]
29. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
30. Power generation from the interaction of a liquid droplet and a liquid membrane. Nie J; Wang Z; Ren Z; Li S; Chen X; Lin Wang Z Nat Commun; 2019 May; 10(1):2264. PubMed ID: 31118419 [TBL] [Abstract][Full Text] [Related]
31. Droplet coalescence on water repellant surfaces. Nam Y; Seo D; Lee C; Shin S Soft Matter; 2015 Jan; 11(1):154-60. PubMed ID: 25375970 [TBL] [Abstract][Full Text] [Related]
32. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related]
33. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
34. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid-Solid Contacting. Zhang J; Lin S; Wang ZL ACS Nano; 2023 Jan; ():. PubMed ID: 36602519 [TBL] [Abstract][Full Text] [Related]
35. Contact electrification and energy harvesting using periodically contacted and squeezed water droplets. Helseth LE; Guo XD Langmuir; 2015 Mar; 31(10):3269-76. PubMed ID: 25730607 [TBL] [Abstract][Full Text] [Related]
37. Electrothermally Assisted Surface Charge Density Gradient Printing to Drive Droplet Transport. Wang F; Sun Y; Zong G; Liang W; Yang B; Guo F; Yangou C; Wang Y; Zhang Z ACS Appl Mater Interfaces; 2022 Jan; 14(2):3526-3535. PubMed ID: 34990109 [TBL] [Abstract][Full Text] [Related]
38. Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Wu H; Mendel N; van der Ham S; Shui L; Zhou G; Mugele F Adv Mater; 2020 Aug; 32(33):e2001699. PubMed ID: 32627893 [TBL] [Abstract][Full Text] [Related]
39. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
40. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]