These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31142582)

  • 21. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes.
    Hochholdinger F; Woll K; Sauer M; Dembinsky D
    Ann Bot; 2004 Apr; 93(4):359-68. PubMed ID: 14980975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of ethylene on root growth of Zea mays seedlings.
    Whalen MC; Feldman LJ
    Can J Bot; 1988 Apr; 66(4):719-23. PubMed ID: 11537849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Root cap-mediated evaluation of soil resistance towards graviresponding roots of maize (Zea mays L.) and the relevance of ethylene.
    Dreyer J; Edelmann HG
    Ann Bot; 2018 Nov; 122(5):791-800. PubMed ID: 29370369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth and gravireaction of maize roots treated with a phytotropin.
    Geissler AE; Pilet PE; Katekar GF
    J Plant Physiol; 1985; 119():25-34. PubMed ID: 11542660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A complete system for 3D reconstruction of roots for phenotypic analysis.
    Kumar P; Cai J; Miklavcic SJ
    Adv Exp Med Biol; 2015; 823():249-70. PubMed ID: 25381112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological effects of thiamethoxam on Zea mays and its electrochemical detection using a silver electrode.
    Ajermoun N; Lahrich S; Bouarab L; Bakasse M; Saqrane S; El Mhammedi MA
    J Sci Food Agric; 2020 Mar; 100(5):2090-2098. PubMed ID: 31875957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid.
    Moore R; Dickey K
    J Exp Bot; 1985 Nov; 36(172):1793-8. PubMed ID: 11540846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of gravitropism in primary roots of Zea mays by chloramphenicol.
    Moore R
    Am J Bot; 1985 May; 72(5):733-6. PubMed ID: 11540886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays.
    Moore R
    Ann Bot; 1990; 66():281-3. PubMed ID: 11537662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays.
    Moore R; Fondren WM
    Ann Bot; 1988; 61():113-6. PubMed ID: 11538241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrient-use efficiency.
    Zhang D; Lyu Y; Li H; Tang X; Hu R; Rengel Z; Zhang F; Whalley WR; Davies WJ; Cahill JF; Shen J
    New Phytol; 2020 Apr; 226(1):244-253. PubMed ID: 31536638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of calcium and pH on growth in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Physiol Plant; 1988; 72():466-70. PubMed ID: 11537850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Movement of endogenous calcium in the elongating zone of graviresponding roots of Zea mays.
    Moore R; Cameron IL; Smith NK
    Ann Bot; 1989; 63():589-93. PubMed ID: 11537737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize.
    Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M
    New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency.
    Gong F; Takahashi H; Omori F; Wang W; Mano Y; Nakazono M
    J Exp Bot; 2019 Nov; 70(21):6475-6487. PubMed ID: 31587072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces.
    Bizet F; Bengough AG; Hummel I; Bogeat-Triboulot MB; Dupuy LX
    J Exp Bot; 2016 Oct; 67(19):5605-5614. PubMed ID: 27664958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).
    Tai H; Lu X; Opitz N; Marcon C; Paschold A; Lithio A; Nettleton D; Hochholdinger F
    J Exp Bot; 2016 Feb; 67(4):1123-35. PubMed ID: 26628518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth Rate Normalization Method to Assess Gravitropic Root Growth.
    Schöller M; Sarkel E; Kleine-Vehn J; Feraru E
    Methods Mol Biol; 2018; 1761():199-208. PubMed ID: 29525959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.