These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31142686)

  • 41. Outcomes After Successful Percutaneous Coronary Intervention of Calcified Lesions Using Rotational Atherectomy, Cutting-Balloon Angioplasty, or Balloon-Only Angioplasty Before Drug-Eluting Stent Implantation.
    Redfors B; Maehara A; Witzenbichler B; Weisz G; Stuckey TD; Henry TD; McAndrew T; Mehran R; Kirtane AJ; Stone GW; Généreux P
    J Invasive Cardiol; 2017 Nov; 29(11):378-386. PubMed ID: 28623669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The impact of coronary calcification on angiographic and 3-year clinical outcomes of everolimus-eluting stents: results of a XIENCE V/PROMUS post-marketing surveillance study.
    Shiode N; Kozuma K; Aoki J; Awata M; Nanasato M; Tanabe K; Yamaguchi J; Kusano H; Nie H; Kimura T;
    Cardiovasc Interv Ther; 2018 Oct; 33(4):313-320. PubMed ID: 28726115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency-domain optical coherence tomography assessment of stent constriction 9 months after sirolimus-eluting stent implantation in a highly calcified plaque.
    Fujino Y; Attizzani GF; Nakamura S; Costa MA; Bezerra HG
    JACC Cardiovasc Interv; 2013 Feb; 6(2):204-5. PubMed ID: 23428015
    [No Abstract]   [Full Text] [Related]  

  • 44. Coronary calcification as a mechanism of plaque/media shrinkage in vessels treated with bioresorbable vascular scaffold: A multimodality intracoronary imaging study.
    Zeng Y; Cavalcante R; Collet C; Tenekecioglu E; Sotomi Y; Miyazaki Y; Katagiri Y; Asano T; Abdelghani M; Nie S; Bourantas CV; Bruining N; Onuma Y; Serruys PW
    Atherosclerosis; 2018 Feb; 269():6-13. PubMed ID: 29247976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wire Bias, Insufficient Differential Sanding, and Orbital Atherectomy-Induced Coronary Pseudoaneurysm.
    Hayashi T; Tanaka Y; Shishido K; Yokota S; Moriyama N; Tobita K; Yamanaka F; Mizuno S; Takahashi S; Saito S
    Circ Cardiovasc Interv; 2018 Oct; 11(10):e007003. PubMed ID: 30354637
    [No Abstract]   [Full Text] [Related]  

  • 46. Orbital atherectomy for the treatment of severely calcified coronary lesions: evidence, technique, and best practices.
    Shlofmitz E; Martinsen BJ; Lee M; Rao SV; Généreux P; Higgins J; Chambers JW; Kirtane AJ; Brilakis ES; Kandzari DE; Sharma SK; Shlofmitz R
    Expert Rev Med Devices; 2017 Nov; 14(11):867-879. PubMed ID: 28945162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcified coronary nodule: Tip of the iceberg on a road full of thorns.
    Grines CL; Tummala PE
    Catheter Cardiovasc Interv; 2023 Apr; 101(5):959-960. PubMed ID: 36934405
    [No Abstract]   [Full Text] [Related]  

  • 48. The Role of Vascular Imaging in Guiding Routine Percutaneous Coronary Interventions: A Meta-Analysis of Bare Metal Stent and Drug-Eluting Stent Trials.
    Alsidawi S; Effat M; Rahman S; Abdallah M; Leesar M
    Cardiovasc Ther; 2015 Dec; 33(6):360-6. PubMed ID: 26363283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orbital atherectomy for the treatment of small (2.5mm) severely calcified coronary lesions: ORBIT II sub-analysis.
    Lee MS; Shlofmitz RA; Shlofmitz E; Srivastava PK; Kong J; Grines C; Revytak G; Chambers JW
    Cardiovasc Revasc Med; 2018 Apr; 19(3 Pt A):268-272. PubMed ID: 29454531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Percutaneous Coronary Intervention in Severely Calcified Unprotected Left Main Coronary Artery Disease: Initial Experience With Orbital Atherectomy.
    Lee MS; Shlofmitz E; Kaplan B; Shlofmitz R
    J Invasive Cardiol; 2016 Apr; 28(4):147-50. PubMed ID: 27031936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thin-cap fibroatheroma and large calcification at the proximal stent edge correlate with a high proportion of uncovered stent struts in the chronic phase.
    Ueda T; Uemura S; Watanabe M; Dote Y; Goryo Y; Sugawara Y; Soeda T; Okayama S; Kawata H; Kawakami R; Okura H; Saito Y
    Coron Artery Dis; 2016 Aug; 27(5):376-84. PubMed ID: 27164267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of intracoronary imaging to guide optimal percutaneous coronary intervention procedures and outcomes.
    Mintz GS; Ali Z; Maehara A
    Heart; 2021 May; 107(9):755-764. PubMed ID: 33257472
    [No Abstract]   [Full Text] [Related]  

  • 54. Drug-coated balloon without stent implantation for chronic total occlusion of coronary arteries: Description of a new strategy with an optical coherence tomography assistance.
    Cortese B; Buccheri D; Piraino D; Silva-Orrego P
    Int J Cardiol; 2015 Jul; 191():75-6. PubMed ID: 25965604
    [No Abstract]   [Full Text] [Related]  

  • 55. Calcified Neoatherosclerosis Causing "Undilatable" In-Stent Restenosis: Insights of Optical Coherence Tomography and Role of Rotational Atherectomy.
    Bastante T; Rivero F; Cuesta J; Alfonso F
    JACC Cardiovasc Interv; 2015 Dec; 8(15):2039-2040. PubMed ID: 26738675
    [No Abstract]   [Full Text] [Related]  

  • 56. Superficial Calcium Fracture After PCI as Assessed by OCT.
    Kubo T; Shimamura K; Ino Y; Yamaguchi T; Matsuo Y; Shiono Y; Taruya A; Nishiguchi T; Shimokado A; Teraguchi I; Orii M; Yamano T; Tanimoto T; Kitabata H; Hirata K; Tanaka A; Akasaka T
    JACC Cardiovasc Imaging; 2015 Oct; 8(10):1228-1229. PubMed ID: 25797130
    [No Abstract]   [Full Text] [Related]  

  • 57. Holistic treatment of heavily calcified coronary lesions: Lithoplasty guidance by optical coherence tomography.
    De Rueda C; Bastante T; Antuña P; Cuesta J; García-Guimaraes M; Rivero F; Alfonso F
    Coron Artery Dis; 2020 Dec; 31(8):748-749. PubMed ID: 32168052
    [No Abstract]   [Full Text] [Related]  

  • 58. Fate of Different Types of Intrastent Tissue Protrusion: Optical Coherence Tomography and Angioscopic Serial Observations at Baseline and 9-Day and 3-Month Follow-Up.
    Suzuki S; Nakatani S; Sotomi Y; Shiojima I; Sakata Y; Higuchi Y
    JACC Cardiovasc Interv; 2018 Jan; 11(1):95-97. PubMed ID: 29248411
    [No Abstract]   [Full Text] [Related]  

  • 59. Progression of a lesion with nodular calcification: serial observations by optical coherence tomography and coronary angioscopy.
    Kimura S; Sagawa Y; Sugiyama T; Hishikari K; Nakamura S; Nakagama S; Misawa T; Mizusawa M; Hayasaka K; Yamakami Y; Kojima K; Ohtani H; Hikita H; Takahashi A; Isobe M
    Coron Artery Dis; 2017 May; 28(3):266-267. PubMed ID: 27824620
    [No Abstract]   [Full Text] [Related]  

  • 60. The OCT-ORION Study: A Randomized Optical Coherence Tomography Study Comparing Resolute Integrity to Biomatrix Drug-Eluting Stent on the Degree of Early Stent Healing and Late Lumen Loss.
    Lee SWL; Tam FCC; Lam SCC; Kong SL; Shea CP; Chan KKW; Wong MKL; Chan MPH; Wong AYT; Yung ASY; Lam YM; Zhang LW; Wu KKY; Mintz GS; Maehara A
    Circ Cardiovasc Interv; 2018 Apr; 11(4):e006034. PubMed ID: 29654119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.