BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31142762)

  • 1. Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study.
    Saeedimasine M; Montanino A; Kleiven S; Villa A
    Sci Rep; 2019 May; 9(1):8000. PubMed ID: 31142762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.
    Hall A; Róg T; Karttunen M; Vattulainen I
    J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of ethanol in multi-component membranes: effects on membrane structure.
    Polley A; Vemparala S
    Chem Phys Lipids; 2013 Jan; 166():1-11. PubMed ID: 23220048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM-POPC Lipid Membrane: A Molecular Dynamics Simulation Study.
    Kumari P; Kumari M; Kashyap HK
    J Phys Chem B; 2019 Nov; 123(45):9616-9628. PubMed ID: 31625744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.
    Janosi L; Gorfe A
    Biophys J; 2010 Nov; 99(9):2957-66. PubMed ID: 21044593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of galactosylceramide on the dynamics of cholesterol-rich lipid membranes.
    Hall A; Róg T; Vattulainen I
    J Phys Chem B; 2011 Dec; 115(49):14424-34. PubMed ID: 22032265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees.
    Ermilova I; Lyubartsev AP
    Soft Matter; 2018 Dec; 15(1):78-93. PubMed ID: 30520494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Simulations of Mixed Lipid Bilayers with Sphingomyelin, Glycerophospholipids, and Cholesterol.
    Bera I; Klauda JB
    J Phys Chem B; 2017 May; 121(20):5197-5208. PubMed ID: 28447449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes.
    Mattjus P; Malewicz B; Valiyaveettil JT; Baumann WJ; Bittman R; Brown RE
    J Biol Chem; 2002 May; 277(22):19476-81. PubMed ID: 11909867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations.
    Kumari P; Kaur S; Sharma S; Kashyap HK
    J Chem Phys; 2018 Apr; 148(16):165102. PubMed ID: 29716234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-ordered phase formation in cholesterol/sphingomyelin bilayers: all-atom molecular dynamics simulations.
    Zidar J; Merzel F; Hodoscek M; Rebolj K; Sepcić K; Macek P; Janezic D
    J Phys Chem B; 2009 Dec; 113(48):15795-802. PubMed ID: 19929009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains.
    Orlikowska-Rzeznik H; Krok E; Domanska M; Setny P; Lągowska A; Chattopadhyay M; Piatkowski L
    J Phys Chem Lett; 2024 Apr; 15(16):4515-4522. PubMed ID: 38634827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine.
    Aittoniemi J; Niemelä PS; Hyvönen MT; Karttunen M; Vattulainen I
    Biophys J; 2007 Feb; 92(4):1125-37. PubMed ID: 17114220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioning of 2,6-Bis(1H-Benzimidazol-2-yl)pyridine fluorophore into a phospholipid bilayer: complementary use of fluorescence quenching studies and molecular dynamics simulations.
    Kyrychenko A; Sevriukov IY; Syzova ZA; Ladokhin AS; Doroshenko AO
    Biophys Chem; 2011 Feb; 154(1):8-17. PubMed ID: 21211898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of chain length and unsaturation on sphingomyelin bilayers.
    Niemelä PS; Hyvönen MT; Vattulainen I
    Biophys J; 2006 Feb; 90(3):851-63. PubMed ID: 16284257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes.
    Yasuda T; Al Sazzad MA; Jäntti NZ; Pentikäinen OT; Slotte JP
    Biophys J; 2016 Jan; 110(2):431-440. PubMed ID: 26789766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study.
    Ermakova E; Zuev Y
    Chem Phys Lipids; 2017 Dec; 209():45-53. PubMed ID: 29122611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.