These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 31142826)
1. Development and evaluation of a deep learning approach for modeling seasonality and trends in hand-foot-mouth disease incidence in mainland China. Wang Y; Xu C; Zhang S; Yang L; Wang Z; Zhu Y; Yuan J Sci Rep; 2019 May; 9(1):8046. PubMed ID: 31142826 [TBL] [Abstract][Full Text] [Related]
2. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. Yu L; Zhou L; Tan L; Jiang H; Wang Y; Wei S; Nie S PLoS One; 2014; 9(6):e98241. PubMed ID: 24893000 [TBL] [Abstract][Full Text] [Related]
3. A hybrid model for hand-foot-mouth disease prediction based on ARIMA-EEMD-LSTM. Wan Y; Song P; Liu J; Xu X; Lei X BMC Infect Dis; 2023 Dec; 23(1):879. PubMed ID: 38102558 [TBL] [Abstract][Full Text] [Related]
4. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636 [TBL] [Abstract][Full Text] [Related]
5. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China. Peng Y; Yu B; Wang P; Kong DG; Chen BH; Yang XB J Huazhong Univ Sci Technolog Med Sci; 2017 Dec; 37(6):842-848. PubMed ID: 29270741 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Zhang R; Guo Z; Meng Y; Wang S; Li S; Niu R; Wang Y; Guo Q; Li Y Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34200378 [TBL] [Abstract][Full Text] [Related]
7. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
8. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
9. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Tian CW; Wang H; Luo XM Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999 [TBL] [Abstract][Full Text] [Related]
11. Epidemiological characteristics, spatial clusters and monthly incidence prediction of hand, foot and mouth disease from 2017 to 2022 in Shanxi Province, China. Ma Y; Xu S; Dong A; An J; Qin Y; Yang H; Yu H Epidemiol Infect; 2023 Mar; 151():e54. PubMed ID: 37039461 [TBL] [Abstract][Full Text] [Related]
12. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
13. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
14. [Model of multiple seasonal autoregressive integrated moving average model and its application in prediction of the hand-foot-mouth disease incidence in Changsha]. Tan T; Chen L; Liu F Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Nov; 39(11):1170-6. PubMed ID: 25432381 [TBL] [Abstract][Full Text] [Related]
15. Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination. Takahashi S; Liao Q; Van Boeckel TP; Xing W; Sun J; Hsiao VY; Metcalf CJ; Chang Z; Liu F; Zhang J; Wu JT; Cowling BJ; Leung GM; Farrar JJ; van Doorn HR; Grenfell BT; Yu H PLoS Med; 2016 Feb; 13(2):e1001958. PubMed ID: 26882540 [TBL] [Abstract][Full Text] [Related]
16. Predicting the incidence of hand, foot and mouth disease in Sichuan province, China using the ARIMA model. Liu L; Luan RS; Yin F; Zhu XP; Lü Q Epidemiol Infect; 2016 Jan; 144(1):144-51. PubMed ID: 26027606 [TBL] [Abstract][Full Text] [Related]
17. Impact of weather factors on hand, foot and mouth disease, and its role in short-term incidence trend forecast in Huainan City, Anhui Province. Zhao D; Wang L; Cheng J; Xu J; Xu Z; Xie M; Yang H; Li K; Wen L; Wang X; Zhang H; Wang S; Su H Int J Biometeorol; 2017 Mar; 61(3):453-461. PubMed ID: 27557791 [TBL] [Abstract][Full Text] [Related]
18. Time series analysis of hand-foot-mouth disease hospitalization in Zhengzhou: establishment of forecasting models using climate variables as predictors. Feng H; Duan G; Zhang R; Zhang W PLoS One; 2014; 9(1):e87916. PubMed ID: 24498221 [TBL] [Abstract][Full Text] [Related]
19. Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach. Ye GH; Alim M; Guan P; Huang DS; Zhou BS; Wu W PLoS One; 2021; 16(3):e0248597. PubMed ID: 33725011 [TBL] [Abstract][Full Text] [Related]
20. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Wang G; Wei W; Jiang J; Ning C; Chen H; Huang J; Liang B; Zang N; Liao Y; Chen R; Lai J; Zhou O; Han J; Liang H; Ye L Epidemiol Infect; 2019 Jan; 147():e194. PubMed ID: 31364559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]