These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31143166)
41. Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core-Shell Nanoparticles and Their Catalysis of NO Pekkari A; Say Z; Susarrey-Arce A; Langhammer C; Härelind H; Sebastian V; Moth-Poulsen K ACS Appl Mater Interfaces; 2019 Oct; 11(39):36196-36204. PubMed ID: 31418548 [TBL] [Abstract][Full Text] [Related]
42. Precipitation of Pt, Pd, Rh, and Ru Nanoparticles with Non-Precious Metals from Model and Real Multicomponent Solutions. Rzelewska-Piekut M; Wolańczyk Z; Nowicki M; Regel-Rosocka M Molecules; 2023 Jul; 28(13):. PubMed ID: 37446850 [TBL] [Abstract][Full Text] [Related]
43. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Uthandi S; Saad B; Humbard MA; Maupin-Furlow JA Appl Environ Microbiol; 2010 Feb; 76(3):733-43. PubMed ID: 19966030 [TBL] [Abstract][Full Text] [Related]
44. Controllable biogenic synthesis of intracellular silver/silver chloride nanoparticles by Alamri SAM; Hashem M; Nafady NA; Sayed MA; Alshehri AM; El-Alshaboury GA J Microbiol Biotechnol; 2018 Jun; 28(6):917-930. PubMed ID: 29847861 [TBL] [Abstract][Full Text] [Related]
45. Palladium Nanoparticles from Era Y; Dennis JA; Horsfall LE; Wallace S JACS Au; 2022 Nov; 2(11):2446-2452. PubMed ID: 36465541 [TBL] [Abstract][Full Text] [Related]
46. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Koschorreck K; Richter SM; Ene AB; Roduner E; Schmid RD; Urlacher VB Appl Microbiol Biotechnol; 2008 May; 79(2):217-24. PubMed ID: 18330561 [TBL] [Abstract][Full Text] [Related]
47. The antibacterial activity of biogenic silver and its mode of action. Sintubin L; De Gusseme B; Van der Meeren P; Pycke BF; Verstraete W; Boon N Appl Microbiol Biotechnol; 2011 Jul; 91(1):153-62. PubMed ID: 21468709 [TBL] [Abstract][Full Text] [Related]
48. Facile synthesis of palladium nanoparticles immobilized on magnetic biodegradable microcapsules used as effective and recyclable catalyst in Suzuki-Miyaura reaction and p-nitrophenol reduction. Baran T; Nasrollahzadeh M Carbohydr Polym; 2019 Oct; 222():115029. PubMed ID: 31320097 [TBL] [Abstract][Full Text] [Related]
49. Electrochemical analysis of Catechol polymerization in presence of Trametes versicolor laccase and the mediator ABTS. Saha R; Mukhopadhyay M Enzyme Microb Technol; 2021 Dec; 152():109934. PubMed ID: 34688090 [TBL] [Abstract][Full Text] [Related]
50. Development of enzyme-free single-step immunoassays for glycocholic acid based on palladium nanoparticle-mediated signal generation. Cui X; He Q; Yang H; Chen Y; Shen D; Eremin SA; Mu Y; Zhao S Anal Bioanal Chem; 2021 Sep; 413(23):5733-5742. PubMed ID: 34476526 [TBL] [Abstract][Full Text] [Related]
51. Glutaraldehyde fixation promotes palladium and gold nanoparticles formation in yeast and enhances their catalytic activity in 4-nitrophenol reduction. Tan L; Liu X; Zhang Y J Hazard Mater; 2023 Mar; 446():130696. PubMed ID: 36603424 [TBL] [Abstract][Full Text] [Related]
52. Expression and characterization of LacMP, a novel fungal laccase of Moniliophthora perniciosa FA553. Liu H; Tong C; Du B; Liang S; Lin Y Biotechnol Lett; 2015 Sep; 37(9):1829-35. PubMed ID: 26093604 [TBL] [Abstract][Full Text] [Related]
53. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component. Li Q; Wang X; Korzhev M; Schröder HC; Link T; Tahir MN; Diehl-Seifert B; Müller WE Biochim Biophys Acta; 2015 Jan; 1850(1):118-28. PubMed ID: 25459515 [TBL] [Abstract][Full Text] [Related]
54. Carbon disulfide mediated self-assembly of Laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. Almeida I; Henriques F; Carvalho MD; Viana AS J Colloid Interface Sci; 2017 Jan; 485():242-250. PubMed ID: 27665077 [TBL] [Abstract][Full Text] [Related]
55. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. Wang S; Chen W; Liu AL; Hong L; Deng HH; Lin XH Chemphyschem; 2012 Apr; 13(5):1199-204. PubMed ID: 22383315 [TBL] [Abstract][Full Text] [Related]
56. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Yong P; Rowson NA; Farr JP; Harris IR; Macaskie LE Biotechnol Bioeng; 2002 Nov; 80(4):369-79. PubMed ID: 12325145 [TBL] [Abstract][Full Text] [Related]
57. Room temperature bioproduction, isolation and anti-microbial properties of stable elemental copper nanoparticles. Pantidos N; Edmundson MC; Horsfall L N Biotechnol; 2018 Jan; 40(Pt B):275-281. PubMed ID: 29017818 [TBL] [Abstract][Full Text] [Related]
58. Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. Mathews SL; Smithson CE; Grunden AM J Appl Microbiol; 2016 Nov; 121(5):1335-1345. PubMed ID: 27451019 [TBL] [Abstract][Full Text] [Related]
59. Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. Alula MT; Madingwane ML; Yan H; Lemmens P; Zhe L; Etzkorn M Environ Sci Pollut Res Int; 2022 Nov; 29(54):81938-81953. PubMed ID: 35739451 [TBL] [Abstract][Full Text] [Related]
60. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata. Pozdnyakova N; Schlosser D; Dubrovskaya E; Balandina S; Sigida E; Grinev V; Turkovskaya O World J Microbiol Biotechnol; 2018 Aug; 34(9):133. PubMed ID: 30109517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]