These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3114345)

  • 1. L-serine enhances the anaerobic lactate metabolism of Veillonella dispar ATCC 17745.
    Hoshino E
    J Dent Res; 1987 Jun; 66(6):1162-5. PubMed ID: 3114345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and degradation of formate by Veillonella dispar ATCC 17745.
    Hoshino E; Sato M
    J Dent Res; 1986 Jun; 65(6):903-5. PubMed ID: 3086409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate metabolism by Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1971 Mar; 105(3):999-1005. PubMed ID: 4323300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens.
    Konings WN; Boonstra J; De Vries W
    J Bacteriol; 1975 Apr; 122(1):245-9. PubMed ID: 164433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate metabolism by human dental plaque and Veillonella under aerobic and anaerobic conditions.
    Hoshino E; Karino H; Yamada T
    Arch Oral Biol; 1981; 26(1):17-22. PubMed ID: 6945076
    [No Abstract]   [Full Text] [Related]  

  • 6. [Comparison between the growth of Veillonella and concentrations of lactate, nitrite and pyruvate in the Veillonella culture medium under aerobic and anaerobic conditions].
    Atumi T; Ueha T; Kiyohara H; Murai T
    Josai Shika Daigaku Kiyo; 1984; 13(3):485-91. PubMed ID: 6598392
    [No Abstract]   [Full Text] [Related]  

  • 7. Nitrate promotes the growth and the production of short-chain fatty acids and tryptophan from commensal anaerobe
    Hung J-H; Zhang S-M; Huang S-L
    Appl Environ Microbiol; 2024 Aug; 90(8):e0114824. PubMed ID: 39082806
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy conservation by succinate decarboxylation in Veillonella parvula.
    Denger K; Schink B
    J Gen Microbiol; 1992 May; 138(5):967-71. PubMed ID: 1645132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen metabolism by the anaerobic bacterium veillonella alcalescens.
    de Vries W; Donkers C; Boellaard M; Stouthamer AH
    Arch Microbiol; 1978 Nov; 119(2):167-74. PubMed ID: 31846
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutualistic interactions of lactate-producing lactobacilli and lactate-utilizing Veillonella dispar: Lactate and glutamate cross-feeding for the enhanced growth and short-chain fatty acid production.
    Zhang SM; Hung JH; Yen TN; Huang SL
    Microb Biotechnol; 2024 May; 17(5):e14484. PubMed ID: 38801349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of nitrates in lactate metabolism in the oral bacterium, Veillonella parvula].
    Atsumi T; Ueha T
    Josai Shika Daigaku Kiyo; 1985; 14(2-3):269-76. PubMed ID: 3869047
    [No Abstract]   [Full Text] [Related]  

  • 12. Nitrite Production from Nitrate and Its Link with Lactate Metabolism in Oral
    Wicaksono DP; Washio J; Abiko Y; Domon H; Takahashi N
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769185
    [No Abstract]   [Full Text] [Related]  

  • 13. Synergism of lactate and succinate as metabolites utilized by Veillonella to inhibit the growth of Salmonella typhimurium and Salmonella enteritidis in vitro.
    Hinton A; Hume ME
    Avian Dis; 1995; 39(2):309-16. PubMed ID: 7677651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L.: D-lactate formation during environmental anaerobiosis versus octopine formation during exercise.
    Meinardus-Hager G; Gäde G
    Exp Biol; 1986; 45(2):91-110. PubMed ID: 2422053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Commensal Anaerobe Veillonella dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase.
    Zhang SM; Huang SL
    Microbiol Spectr; 2023 Mar; 11(2):e0355822. PubMed ID: 36975840
    [No Abstract]   [Full Text] [Related]  

  • 16. ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens.
    de Vries W; Rietveld-Struijk RM; Stouthamer AH
    Antonie Van Leeuwenhoek; 1977; 43(2):153-67. PubMed ID: 202192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic and aerobic metabolism of sorbitol in Streptococcus sanguis and Streptococcus mitior.
    Svensäter G; Takahashi-Abbe S; Abbe K; Birkhed D; Yamada T; Edwardsson S
    J Dent Res; 1985 Nov; 64(11):1286-9. PubMed ID: 3867686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of molybdenum on the growth and metabolism of Veillonella parvula and Streptococcus mutans.
    Coulter WA; Russell C
    J Dent Res; 1974; 53(6):1445-9. PubMed ID: 4529936
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of Metabolic Intermediates in the Inhibition of Salmonella typhimurium and Salmonella enteritidis by Veillonella.
    Hinton A; Hume ME; Deloach JR
    J Food Prot; 1993 Nov; 56(11):932-937. PubMed ID: 31113081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of mixed chemostat cultures of an aerobic bacterium, Comamonas testosteroni, and an anaerobic bacterium, Veillonella alcalescens: comparison with experimental data.
    Gerritse J; Schut F; Gottschal JC
    Appl Environ Microbiol; 1992 May; 58(5):1466-76. PubMed ID: 1622213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.