These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31143488)

  • 1. Numerical model of the inhomogeneous scattering by the human lens.
    Cuadrado A; Sanchez-Brea LM; Torcal-Milla FJ; Quiroga JA; Gomez-Pedrero JA
    Biomed Opt Express; 2019 May; 10(5):2161-2176. PubMed ID: 31143488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry-invariant GRIN lens: finite ray tracing.
    Bahrami M; Goncharov AV
    Opt Express; 2014 Nov; 22(23):27797-810. PubMed ID: 25402023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering of an electromagnetic plane wave by a Luneburg lens. III. Finely stratified sphere model.
    Lock JA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):2991-3000. PubMed ID: 19037390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic light scattering from nanoparticles by monochromatic vacuum-ultraviolet radiation.
    Shu J; Wilson KR; Ahmed M; Leone SR; Graf C; Rühl E
    J Chem Phys; 2006 Jan; 124(3):034707. PubMed ID: 16438600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue.
    Okada E; Schweiger M; Arridge SR; Firbank M; Delpy DT
    Appl Opt; 1996 Jul; 35(19):3362-71. PubMed ID: 21102723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering of human lens vesicles in vitro.
    Tang D; Borchman D; Schwarz AK; Yappert MC; Vrensen GF; van Marle J; DuPré DB
    Exp Eye Res; 2003 May; 76(5):605-12. PubMed ID: 12697424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-dependent forward light scattering by donor lenses.
    van den Berg TJ
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1157-66. PubMed ID: 8631630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography images simulated with an analytical solution of Maxwell's equations for cylinder scattering.
    Brenner T; Reitzle D; Kienle A
    J Biomed Opt; 2016 Apr; 21(4):45001. PubMed ID: 27032336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamic light scattering characterization of a human lens: cataract index.
    Dhadwal HS; Wittpenn J
    Curr Eye Res; 2000 Jun; 20(6):502-10. PubMed ID: 10980663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A second-order finite element algorithm for solving the three-dimensional EEG forward problem.
    Zhang YC; Zhu SA; He B
    Phys Med Biol; 2004 Jul; 49(13):2975-87. PubMed ID: 15285259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of amplified scattering in photorefractive media: comparison of numerical results and experiment.
    Parshall E; Cronin-Golomb M; Barakat R
    Opt Lett; 1995 Mar; 20(5):432-4. PubMed ID: 19859211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular reflectance of a highly forward scattering medium at grazing incidence of light.
    Marinyuk VV; Remizovich VS; Sheberstov SV
    J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):501-510. PubMed ID: 32118935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating pitch angle scattering using an explicitly solvable energy-conserving algorithm.
    Zhang X; Fu Y; Qin H
    Phys Rev E; 2020 Sep; 102(3-1):033302. PubMed ID: 33075918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection.
    Munawar Qureshi A; Mustansar Z; Mustafa S
    R Soc Open Sci; 2018 Jul; 5(7):180319. PubMed ID: 30109085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A FEM-based method to determine the complex material properties of piezoelectric disks.
    Pérez N; Carbonari RC; Andrade MA; Buiochi F; Adamowski JC
    Ultrasonics; 2014 Aug; 54(6):1631-41. PubMed ID: 24735932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model.
    Kai L; Massoli P
    Appl Opt; 1994 Jan; 33(3):501-11. PubMed ID: 20862042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An index for human lens transparency related to age and lens layer: comparison between normal volunteers and diabetic patients with still clear lenses.
    Sasaki H; Hockwin O; Kasuga T; Nagai K; Sakamoto Y; Sasaki K
    Ophthalmic Res; 1999; 31(2):93-103. PubMed ID: 9933770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in lidar geometry.
    Mannoni A; Flesia C; Bruscaglioni P; Ismaelli A
    Appl Opt; 1996 Dec; 35(36):7151-64. PubMed ID: 21151321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.