These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31143499)

  • 1. Contrast improvement in two-photon microscopy with instantaneous differential aberration imaging.
    Xiao S; Mertz J
    Biomed Opt Express; 2019 May; 10(5):2467-2477. PubMed ID: 31143499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy.
    Leray A; Lillis K; Mertz J
    Biophys J; 2008 Feb; 94(4):1449-58. PubMed ID: 17951295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging.
    Leray A; Mertz J
    Opt Express; 2006 Oct; 14(22):10565-73. PubMed ID: 19529458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection.
    Song J; Kang J; Kang U; Nam HS; Kim HJ; Kim RH; Kim JW; Yoo H
    Sci Rep; 2023 Aug; 13(1):14244. PubMed ID: 37648768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser.
    Ryu J; Kang U; Kim J; Kim H; Kang JH; Kim H; Sohn DK; Jeong JH; Yoo H; Gweon B
    Biomed Opt Express; 2018 Jul; 9(7):3449-3463. PubMed ID: 29984109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Signal and Photobleaching Characteristics of Temporal Focusing Microscopy with the Increase in Pulse Repetition Rate.
    Lisicovas V; Mariserla BMK; Sahoo C; Harding RT; Man MKL; Wong EL; Madéo J; Dani KM
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31357714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
    Lee JH; Lee S; Gho YS; Song IS; Tchah H; Kim MJ; Kim KH
    Exp Eye Res; 2015 Mar; 132():101-8. PubMed ID: 25602499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frustrated FRET for high-contrast high-resolution two-photon imaging.
    Xu F; Wei L; Chen Z; Min W
    Opt Express; 2013 Jun; 21(12):14097-108. PubMed ID: 23787600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.
    Alexander NS; Palczewska G; Stremplewski P; Wojtkowski M; Kern TS; Palczewski K
    Biomed Opt Express; 2016 Jul; 7(7):2671-91. PubMed ID: 27446697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanol immersion reduces spherical aberration of water dipping lenses at long wavelengths used in multi-photon laser scanning microscopy.
    Norris G; Gebril A; Ferro VA; McConnell G
    Biomed Opt Express; 2012 Dec; 3(12):3314-24. PubMed ID: 23243580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon fluorescence imaging of subsurface tissue structures with volume holographic microscopy.
    Zhai X; Vyas S; Yeh JA; Luo Y
    J Biomed Opt; 2020 Nov; 25(12):. PubMed ID: 33231017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping.
    Piazza S; Bianchini P; Sheppard C; Diaspro A; Duocastella M
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon microscopy of fungal keratitis-affected rabbit cornea ex vivo using moxifloxacin as a labeling agent.
    Lee JH; Le VH; Lee S; Park JH; Lee JA; Tchah H; Kim S; Kim MJ; Kim KH
    Exp Eye Res; 2018 Sep; 174():51-58. PubMed ID: 29787746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment.
    Petusseau AF; Streeter SS; Ulku A; Feng Y; Samkoe KS; Bruschini C; Charbon E; Pogue BW; Bruza P
    J Biomed Opt; 2024 Jan; 29(1):016004. PubMed ID: 38235320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging.
    Dehez H; Piché M; De Koninck Y
    Opt Express; 2013 Jul; 21(13):15912-25. PubMed ID: 23842378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Photon Adaptive Optics for Mouse Brain Imaging.
    Sinefeld D; Xia F; Wang M; Wang T; Wu C; Yang X; Paudel HP; Ouzounov DG; Bifano TG; Xu C
    Front Neurosci; 2022; 16():880859. PubMed ID: 35692424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon microscopy for microrobotics: Visualization of micro-agents below fixed tissue.
    Huaroto JJ; Capuano L; Kaya M; Hlukhau I; Assayag F; Mohanty S; Römer GW; Misra S
    PLoS One; 2023; 18(8):e0289725. PubMed ID: 37561749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis.
    Wilms CD; Schmidt H; Eilers J
    Cell Calcium; 2006 Jul; 40(1):73-9. PubMed ID: 16690123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics.
    Ye S; Yin Y; Yao J; Nie J; Song Y; Gao Y; Yu J; Li H; Fei P; Zheng W
    Biomed Opt Express; 2020 Nov; 11(11):6634-6648. PubMed ID: 33282513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.