BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31143887)

  • 1. Development of a red absorbing Se-rhodamine photosensitizer and its application for bio-orthogonally activatable photodynamic therapy.
    Lv W; Chi S; Feng W; Liang T; Song D; Liu Z
    Chem Commun (Camb); 2019 Jun; 55(49):7037-7040. PubMed ID: 31143887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy.
    Zeng L; Kuang S; Li G; Jin C; Ji L; Chao H
    Chem Commun (Camb); 2017 Feb; 53(12):1977-1980. PubMed ID: 28119967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the tumor cell selectivity of a rhodamine-decorated iridium(III) complex by conjugating with indomethacin for COX-2 targeted photodynamic therapy.
    Liu C; Xiang J; Xiang C; Li H
    Bioorg Chem; 2021 Sep; 114():105142. PubMed ID: 34243072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traceable cancer cell photoablation with a new mitochondria-responsive and -activatable red-emissive photosensitizer.
    Yang C; Hu R; Lu F; Guo X; Wang S; Zeng Y; Li Y; Yang G
    Chem Commun (Camb); 2019 Mar; 55(26):3801-3804. PubMed ID: 30865193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric ZnPc-rhodamine B conjugates for mitochondrial targeted photodynamic therapy.
    Muli DK; Rajaputra P; You Y; McGrath DV
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4496-4500. PubMed ID: 25150377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy.
    Liu M; Li C
    Chempluschem; 2020 May; 85(5):948-957. PubMed ID: 32401421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.
    Davies KS; Linder MK; Kryman MW; Detty MR
    Bioorg Med Chem; 2016 Sep; 24(17):3908-3917. PubMed ID: 27246858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells.
    Karaman O; Almammadov T; Emre Gedik M; Gunaydin G; Kolemen S; Gunbas G
    ChemMedChem; 2019 Nov; 14(22):1879-1886. PubMed ID: 31663667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation by Glutathione in Hypoxic Environment of an Azo-based Rhodamine Activatable Photosensitizer. A Computational Elucidation.
    Ponte F; Mazzone G; Russo N; Sicilia E
    Chemistry; 2022 Mar; 28(13):e202104083. PubMed ID: 35040535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A naphthalocyanine based near-infrared photosensitizer: synthesis and in vitro photodynamic activities.
    Luan L; Ding L; Zhang W; Shi J; Yu X; Liu W
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3775-9. PubMed ID: 23721806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells.
    Bio M; Rajaputra P; You Y
    Bioorg Med Chem Lett; 2016 Jan; 26(1):145-8. PubMed ID: 26584884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biological evaluation of 17
    Zhu W; Wang LX; Chen DY; Gao YH; Yan YJ; Wu XF; Wang M; Han YP; Chen ZL
    Bioorg Med Chem Lett; 2018 Sep; 28(16):2784-2788. PubMed ID: 29279274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia.
    Lv W; Zhang Z; Zhang KY; Yang H; Liu S; Xu A; Guo S; Zhao Q; Huang W
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9947-51. PubMed ID: 27381490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Far-red-absorbing cationic phthalocyanine photosensitizers: synthesis and evaluation of the photodynamic anticancer activity and the mode of cell death induction.
    Machacek M; Cidlina A; Novakova V; Svec J; Rudolf E; Miletin M; Kučera R; Simunek T; Zimcik P
    J Med Chem; 2015 Feb; 58(4):1736-49. PubMed ID: 25599409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitochondria-targeting supramolecular photosensitizer based on pillar[5]arene for photodynamic therapy.
    Rui L; Xue Y; Wang Y; Gao Y; Zhang W
    Chem Commun (Camb); 2017 Mar; 53(21):3126-3129. PubMed ID: 28245021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer.
    Ruiz-González R; Acedo P; Sánchez-García D; Nonell S; Cañete M; Stockert JC; Villanueva A
    Eur J Med Chem; 2013 May; 63():401-14. PubMed ID: 23517729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-substituted phthalocyanine photosensitizers: design, synthesis, photophysicochemical and photobiological studies.
    Göksel M; Durmuş M; Atilla D
    Photochem Photobiol Sci; 2016 Oct; 15(10):1318-1329. PubMed ID: 27714248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.
    Liu Z; Fu X; Huang W; Li C; Wang X; Huang B
    J Photochem Photobiol B; 2018 Mar; 180():89-97. PubMed ID: 29413706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine.
    Li L; Luo Z; Chen Z; Chen J; Zhou S; Xu P; Hu P; Wang J; Chen N; Huang J; Huang M
    Bioconjug Chem; 2012 Nov; 23(11):2168-72. PubMed ID: 23057652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design, synthesis, and evaluation of organic dithienopyrrole-based D-π-A dyes for use as sensitizers in photodynamic therapy.
    Fuse S; Matsumura K; Takizawa M; Sato S; Nakamura H
    Bioorg Med Chem Lett; 2018 Oct; 28(18):3099-3104. PubMed ID: 30055886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.