BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31144031)

  • 21. Critical pore size for micropore filling in coal samples with different rank coals.
    Hong L; Wang W; Gao D; Liu W
    PLoS One; 2022; 17(3):e0264225. PubMed ID: 35275921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights on the initial stages of carbonization of sub-bituminous coal.
    Saha B; Patra AS; Mukherjee AK
    J Mol Graph Model; 2021 Jul; 106():107868. PubMed ID: 34015578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations.
    Qi T; Bauschlicher CW; Lawson JW; Desai TG; Reed EJ
    J Phys Chem A; 2013 Nov; 117(44):11115-25. PubMed ID: 24094313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A ReaxFF molecular dynamic study on pyrolysis behavior and sulfur transfer during pyrolysis of vulcanized natural rubber.
    Wei X; Yu J; Du J; Sun L
    Waste Manag; 2022 Feb; 139():39-49. PubMed ID: 34933245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization.
    Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Transformation of Na, K, Pb and Mn during pyrolysis of coal].
    Guo R; Yang J; Liu D; Liu Z
    Huan Jing Ke Xue; 2002 Sep; 23(5):100-4. PubMed ID: 12533937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental study on CO and CO
    Yuan L; Smith AC
    J Loss Prev Process Ind; 2013 Nov; 26(6):1321-1327. PubMed ID: 26203211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].
    Zhou J; Yang Z; Liu XF; Wu L; Tian YH; Zhao XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):459-65. PubMed ID: 27209750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.
    Yuan S; Chen XL; Li WF; Liu HF; Wang FC
    Bioresour Technol; 2011 Nov; 102(21):10124-30. PubMed ID: 21903383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Pyrolysis Performance and Molecular Structure of Five Kinds of Low-Rank Coals in Xinjiang Based on the TG-DTG Method.
    Shan XK; Zhao SL; Ma YY; Mo W; Wei XY
    ACS Omega; 2022 Mar; 7(10):8547-8557. PubMed ID: 35309428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars.
    Gil S; Smoliński A
    ScientificWorldJournal; 2015; 2015():867030. PubMed ID: 26065028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction analysis and visualization of ReaxFF molecular dynamics simulations.
    Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X
    J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-pyrolysis behavior of microalgae biomass and low-rank coal: Kinetic analysis of the main volatile products.
    Wu Z; Li Y; Zhang B; Yang W; Yang B
    Bioresour Technol; 2019 Jan; 271():202-209. PubMed ID: 30268812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Capturing and Absorption of Sulfur Gases Formed during Thermal Treatment of South African Coals.
    Matjie RH; Lesufi JM; Bunt JR; Strydom CA; Schobert HH; Uwaoma R
    ACS Omega; 2018 Oct; 3(10):14201-14212. PubMed ID: 31458111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Chemometrics for Coal Pyrolysis Products by Online py-GC×GC-MS.
    Yin H; Lu J; Liu G; Niu Z; Zha X; Wu D; Feng A; Hu Y
    ACS Omega; 2021 Feb; 6(5):3763-3770. PubMed ID: 33585755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of coal treatments on the Ni loading mechanism of Ni-loaded lignite char catalysts.
    Tipo R; Chaichana C; Noda R; Chaiklangmuang S
    RSC Adv; 2021 Oct; 11(56):35624-35643. PubMed ID: 35493187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Characteristics and Graphitizability of Tars from Thermal versus Microwave Plasma Pyrolysis of Coals.
    Gharpure A; Viswanathan V; Mantri A; Skoptsov G; Vander Wal RL
    ACS Omega; 2024 Jan; 9(3):3384-3391. PubMed ID: 38284088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The fate of fluorine and chlorine during thermal treatment of coals.
    Guo S; Yang J; Liu Z
    Environ Sci Technol; 2006 Dec; 40(24):7886-9. PubMed ID: 17256543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Dynamics Simulation and Gas Generation Tracking of Pyrolysis of Bituminous Coal.
    Zhang J; Wang J; Li Z; Zhu J; Lu B
    ACS Omega; 2022 Apr; 7(13):11190-11199. PubMed ID: 35415362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.