BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31144251)

  • 1. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites.
    Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T
    Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method.
    Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T
    Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.
    Ding Q; Wang Y; Zhuang D
    J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spatial distribution prediction of surface soil Pb in a battery contaminated site].
    Liu G; Niu JJ; Zhang C; Zhao X; Guo GL
    Huan Jing Ke Xue; 2014 Dec; 35(12):4712-9. PubMed ID: 25826945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content].
    Hu KL; Li BG; Lu YZ; Zhang FR
    Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and uncertainty analysis of soil Bbf spatial distribution estimation at a coking plant-contaminated site based on normalization geostatistical technologies.
    Liu G; Niu J; Zhang C; Guo G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20121-30. PubMed ID: 26300353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis.
    Xie Y; Chen TB; Lei M; Yang J; Guo QJ; Song B; Zhou XY
    Chemosphere; 2011 Jan; 82(3):468-76. PubMed ID: 20970158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China.
    Qu L; Xiao H; Zheng N; Zhang Z; Xu Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2578-2588. PubMed ID: 27826827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China.
    Wen L; Zhang L; Bai J; Wang Y; Wei Z; Liu H
    Chemosphere; 2022 Dec; 309(Pt 2):136789. PubMed ID: 36223825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of spatial prediction and sampling strategy of site contamination based on Thiessen polygon coupling interpolation.
    Liu X; Zheng L; Li Z; Liu F; Obin N
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78959-78972. PubMed ID: 37278892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans.
    Metahni S; Coudert L; Gloaguen E; Guemiza K; Mercier G; Blais JF
    Environ Pollut; 2019 Sep; 252(Pt A):409-419. PubMed ID: 31158669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved non-stationary geostatistical method for three-dimensional interpolation of Benzo(a)pyrene at a contaminated site.
    Li Y; Hou Y; Tao H; Cao H; Liu X; Wang Z; Liao X
    Sci Total Environ; 2022 Sep; 838(Pt 2):156169. PubMed ID: 35613641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region].
    Yu Y; Wei W; Chen LD; Yang L; Zhang HD
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):999-1006. PubMed ID: 26259439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas].
    Ma HH; Yu T; Yang ZF; Hou QY; Zeng QL; Wang R
    Huan Jing Ke Xue; 2018 Oct; 39(10):4684-4693. PubMed ID: 30229617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant.
    Yuan Y; Yang K; Cheng L; Bai Y; Wang Y; Hou Y; Ding A
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model.
    Yin G; Chen X; Zhu H; Chen Z; Su C; He Z; Qiu J; Wang T
    Sci Total Environ; 2022 Jun; 825():153948. PubMed ID: 35219652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping.
    Fazeli Sangani M; Namdar Khojasteh D; Owens G
    Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method.
    Ju L; Guo S; Ruan X; Wang Y
    Environ Pollut; 2023 Aug; 330():121827. PubMed ID: 37187280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods.
    Liu R; Chen Y; Sun C; Zhang P; Wang J; Yu W; Shen Z
    Mar Pollut Bull; 2014 Sep; 86(1-2):68-75. PubMed ID: 25113104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.