BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31144574)

  • 1. Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome.
    Li Y; Hagen DE; Ji T; Bakhtiarizadeh MR; Frederic WM; Traxler EM; Kalish JM; Rivera RM
    Epigenetics; 2019 Sep; 14(9):850-876. PubMed ID: 31144574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.
    Chen Z; Hagen DE; Elsik CG; Ji T; Morris CJ; Moon LE; Rivera RM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4618-23. PubMed ID: 25825726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann.
    Chen Z; Robbins KM; Wells KD; Rivera RM
    Epigenetics; 2013 Jun; 8(6):591-601. PubMed ID: 23751783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome.
    Chen Z; Hagen DE; Ji T; Elsik CG; Rivera RM
    Sci Rep; 2017 Oct; 7(1):12667. PubMed ID: 28978943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review.
    Mangiavacchi PM; Caldas-Bussiere MC; Mendonça MDS; Dias AJB; Rios ÁFL
    Theriogenology; 2021 Oct; 173():193-201. PubMed ID: 34399383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine.
    Robbins KM; Chen Z; Wells KD; Rivera RM
    J Biomed Sci; 2012 Nov; 19(1):95. PubMed ID: 23153226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.
    Hori N; Nagai M; Hirayama M; Hirai T; Matsuda K; Hayashi M; Tanaka T; Ozawa T; Horike S
    Anim Reprod Sci; 2010 Dec; 122(3-4):303-12. PubMed ID: 21035970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overgrowth Syndrome.
    Li Y; Donnelly CG; Rivera RM
    Vet Clin North Am Food Anim Pract; 2019 Jul; 35(2):265-276. PubMed ID: 31103180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome.
    Li Y; Sena Lopes J; Coy-Fuster P; Rivera RM
    Epigenetics; 2022 Nov; 17(11):1477-1496. PubMed ID: 35466858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer.
    Mangiavacchi PM; Caldas-Bussiere MC; Mendonça MDS; Rumpf R; Lemos Júnior PES; Alves CS; Carneiro WDS; Dias AJB; Rios ÁFL
    Theriogenology; 2022 Jul; 186():95-107. PubMed ID: 35439626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies.
    Lim D; Bowdin SC; Tee L; Kirby GA; Blair E; Fryer A; Lam W; Oley C; Cole T; Brueton LA; Reik W; Macdonald F; Maher ER
    Hum Reprod; 2009 Mar; 24(3):741-7. PubMed ID: 19073614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and molecular analyses of Beckwith-Wiedemann syndrome: Comparison between spontaneous conception and assisted reproduction techniques.
    Tenorio J; Romanelli V; Martin-Trujillo A; Fernández GM; Segovia M; Perandones C; Pérez Jurado LA; Esteller M; Fraga M; Arias P; Gordo G; Dapía I; Mena R; Palomares M; Pérez de Nanclares G; Nevado J; García-Miñaur S; Santos-Simarro F; Martinez-Glez V; Vallespín E; ; Monk D; Lapunzina P
    Am J Med Genet A; 2016 Oct; 170(10):2740-9. PubMed ID: 27480579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The counterpart congenital overgrowth syndromes Beckwith-Wiedemann Syndrome in human and large offspring syndrome in bovine involve alterations in DNA methylation, transcription, and chromatin configuration.
    Li Y; Xiao P; Boadu F; Goldkamp AK; Nirgude S; Cheng J; Hagen DE; Kalish JM; Rivera RM
    medRxiv; 2023 Dec; ():. PubMed ID: 38168424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith-Wiedemann syndrome.
    Johnson JP; Beischel L; Schwanke C; Styren K; Crunk A; Schoof J; Elias AF
    J Assist Reprod Genet; 2018 Jun; 35(6):985-992. PubMed ID: 29936652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome.
    Gaston V; Le Bouc Y; Soupre V; Burglen L; Donadieu J; Oro H; Audry G; Vazquez MP; Gicquel C
    Eur J Hum Genet; 2001 Jun; 9(6):409-18. PubMed ID: 11436121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome.
    Catchpoole D; Lam WW; Valler D; Temple IK; Joyce JA; Reik W; Schofield PN; Maher ER
    J Med Genet; 1997 May; 34(5):353-9. PubMed ID: 9152830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi.
    Paganini L; Carlessi N; Fontana L; Silipigni R; Motta S; Fiori S; Guerneri S; Lalatta F; Cereda A; Sirchia S; Miozzo M; Tabano S
    Epigenetics; 2015; 10(7):643-9. PubMed ID: 26061650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenotype, genotype, and phenotype analysis of patients in Taiwan with Beckwith-Wiedemann syndrome.
    Lin HY; Chuang CK; Tu RY; Fang YY; Su YN; Chen CP; Chang CY; Liu HC; Chu TH; Niu DM; Lin SP
    Mol Genet Metab; 2016 Sep; 119(1-2):8-13. PubMed ID: 27436784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19.
    DeBaun MR; Niemitz EL; Feinberg AP
    Am J Hum Genet; 2003 Jan; 72(1):156-60. PubMed ID: 12439823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.
    Soejima H; Higashimoto K
    J Hum Genet; 2013 Jul; 58(7):402-9. PubMed ID: 23719190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.