BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31144729)

  • 1. Previous Damage Accumulation Can Influence Femoral Fracture Strength: A Finite Element Study.
    Haider IT; Frei H
    J Orthop Res; 2019 Oct; 37(10):2197-2203. PubMed ID: 31144729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femoral fracture load and fracture pattern is accurately predicted using a gradient-enhanced quasi-brittle finite element model.
    Haider IT; Goldak J; Frei H
    Med Eng Phys; 2018 May; 55():1-8. PubMed ID: 29551293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.
    Keyak JH; Sigurdsson S; Karlsdottir GS; Oskarsdottir D; Sigmarsdottir A; Kornak J; Harris TB; Sigurdsson G; Jonsson BY; Siggeirsdottir K; Eiriksdottir G; Gudnason V; Lang TF
    Bone; 2013 Nov; 57(1):18-29. PubMed ID: 23907032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip.
    Dragomir-Daescu D; Op Den Buijs J; McEligot S; Dai Y; Entwistle RC; Salas C; Melton LJ; Bennet KE; Khosla S; Amin S
    Ann Biomed Eng; 2011 Feb; 39(2):742-55. PubMed ID: 21052839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions.
    Bessho M; Ohnishi I; Matsumoto T; Ohashi S; Matsuyama J; Tobita K; Kaneko M; Nakamura K
    Bone; 2009 Aug; 45(2):226-31. PubMed ID: 19398043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation.
    Hambli R; Allaoui S
    Ann Biomed Eng; 2013 Dec; 41(12):2515-27. PubMed ID: 23864338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of loading rate on the of mechanical behavior of the femur in falling condition.
    Askarinejad S; Johnson JE; Rahbar N; Troy KL
    J Mech Behav Biomed Mater; 2019 Aug; 96():269-278. PubMed ID: 31075748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories.
    Keyak JH; Rossi SA
    J Biomech; 2000 Feb; 33(2):209-14. PubMed ID: 10653034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women.
    Falcinelli C; Schileo E; Balistreri L; Baruffaldi F; Bordini B; Viceconti M; Albisinni U; Ceccarelli F; Milandri L; Toni A; Taddei F
    Bone; 2014 Oct; 67():71-80. PubMed ID: 25014885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of femoral fracture load using automated finite element modeling.
    Keyak JH; Rossi SA; Jones KA; Skinner HB
    J Biomech; 1998 Feb; 31(2):125-33. PubMed ID: 9593205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load.
    Keyak JH; Falkinstein Y
    Med Eng Phys; 2003 Nov; 25(9):781-7. PubMed ID: 14519351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations.
    Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK
    Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of foramina on femoral neck fractures and strains predicted with finite element analysis.
    Kok J; Odin K; Rokkones S; Grassi L; Isaksson H
    J Mech Behav Biomed Mater; 2022 Oct; 134():105364. PubMed ID: 35917637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip load capacity and yield load in men and women of all ages.
    Keyak JH; Kaneko TS; Khosla S; Amin S; Atkinson EJ; Lang TF; Sibonga JD
    Bone; 2020 Aug; 137():115321. PubMed ID: 32184195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specimen-specific modeling of hip fracture pattern and repair.
    Ali AA; Cristofolini L; Schileo E; Hu H; Taddei F; Kim RH; Rullkoetter PJ; Laz PJ
    J Biomech; 2014 Jan; 47(2):536-43. PubMed ID: 24275435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How accurately can we predict the fracture load of the proximal femur using finite element models?
    van den Munckhof S; Zadpoor AA
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):373-80. PubMed ID: 24485865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.