These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31144811)

  • 1. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment.
    Katayama K; Nakamura S; Sasaki T; Imai H; Kandori H
    Biochemistry; 2019 Jul; 58(26):2944-2952. PubMed ID: 31144811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.
    Katayama K; Furutani Y; Iwaki M; Fukuda T; Imai H; Kandori H
    Phys Chem Chem Phys; 2018 Jan; 20(5):3381-3387. PubMed ID: 29297909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
    Davies WI; Wilkie SE; Cowing JA; Hankins MW; Hunt DM
    Cell Mol Life Sci; 2012 Jul; 69(14):2455-64. PubMed ID: 22349213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.
    Srinivasan S; CordomĂ­ A; Ramon E; Garriga P
    Cell Mol Life Sci; 2016 Mar; 73(6):1253-63. PubMed ID: 26387074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure of locust opsins: a speculative model which may account for ultraviolet wavelength light detection.
    Towner P; Harris P; Wolstenholme AJ; Hill C; Worm K; Gärtner W
    Vision Res; 1997 Mar; 37(5):495-503. PubMed ID: 9156194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral tuning in the human blue cone pigment.
    Fasick JI; Lee N; Oprian DD
    Biochemistry; 1999 Sep; 38(36):11593-6. PubMed ID: 10512613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning in the mammalian short-wavelength sensitive cone pigments.
    Fasick JI; Applebury ML; Oprian DD
    Biochemistry; 2002 May; 41(21):6860-5. PubMed ID: 12022891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment.
    Fujimoto KJ; Minowa F; Nishina M; Nakamura S; Ohashi S; Katayama K; Kandori H; Yanai T
    J Phys Chem Lett; 2023 Feb; 14(7):1784-1793. PubMed ID: 36762971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride effect on iodopsin studied by low-temperature visible and infrared spectroscopies.
    Hirano T; Imai H; Kandori H; Shichida Y
    Biochemistry; 2001 Feb; 40(5):1385-92. PubMed ID: 11170466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colour tuning mechanisms of visual pigments.
    Lin SW; Sakmar TP
    Novartis Found Symp; 1999; 224():124-35; discussion 135-41, 181-90. PubMed ID: 10614049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anion binding on iodopsin studied by low-temperature fourier transform infrared spectroscopy.
    Imamoto Y; Hirano T; Imai H; Kandori H; Maeda A; Yoshizawa T; Groesbeek M; Lugtenburg J; Shichida Y
    Biochemistry; 1999 Sep; 38(36):11749-54. PubMed ID: 10512631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine 85 in transmembrane helix 2 of short-wavelength visual pigments interacts with the retinylidene Schiff base counterion.
    Dukkipati A; Vought BW; Singh D; Birge RR; Knox BE
    Biochemistry; 2001 Dec; 40(50):15098-108. PubMed ID: 11735392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.