These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31144935)

  • 1. Supersolid-Based Gravimeter in a Ring Cavity.
    Gietka K; Mivehvar F; Ritsch H
    Phys Rev Lett; 2019 May; 122(19):190801. PubMed ID: 31144935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driven-Dissipative Supersolid in a Ring Cavity.
    Mivehvar F; Ostermann S; Piazza F; Ritsch H
    Phys Rev Lett; 2018 Mar; 120(12):123601. PubMed ID: 29694105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supersolid gap soliton in a Bose-Einstein condensate and optical ring cavity coupling system.
    Qin J; Zhou L
    Phys Rev E; 2022 May; 105(5-1):054214. PubMed ID: 35706219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supersolid Properties of a Bose-Einstein Condensate in a Ring Resonator.
    Schuster SC; Wolf P; Ostermann S; Slama S; Zimmermann C
    Phys Rev Lett; 2020 Apr; 124(14):143602. PubMed ID: 32338967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravimetry through non-linear optomechanics.
    Qvarfort S; Serafini A; Barker PF; Bose S
    Nat Commun; 2018 Sep; 9(1):3690. PubMed ID: 30206216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate.
    Szigeti SS; Nolan SP; Close JD; Haine SA
    Phys Rev Lett; 2020 Sep; 125(10):100402. PubMed ID: 32955338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms.
    Zhang H; Ren X; Yan W; Cheng Y; Zhou H; Gao Z; Luo Q; Zhou M; Hu Z
    Opt Express; 2021 Sep; 29(19):30007-30019. PubMed ID: 34614733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collapse and revival of the matter wave field of a Bose-Einstein condensate.
    Greiner M; Mandel O; Hänsch TW; Bloch I
    Nature; 2002 Sep; 419(6902):51-4. PubMed ID: 12214228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity.
    Kollár AJ; Papageorge AT; Vaidya VD; Guo Y; Keeling J; Lev BL
    Nat Commun; 2017 Feb; 8():14386. PubMed ID: 28211455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supersolid formation in a quantum gas breaking a continuous translational symmetry.
    Léonard J; Morales A; Zupancic P; Esslinger T; Donner T
    Nature; 2017 Mar; 543(7643):87-90. PubMed ID: 28252072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates.
    Helm JL; Billam TP; Rakonjac A; Cornish SL; Gardiner SA
    Phys Rev Lett; 2018 Feb; 120(6):063201. PubMed ID: 29481231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicke quantum phase transition with a superfluid gas in an optical cavity.
    Baumann K; Guerlin C; Brennecke F; Esslinger T
    Nature; 2010 Apr; 464(7293):1301-6. PubMed ID: 20428162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate.
    Tan QS; Yuan JB; Liao JQ; Kuang LM
    Opt Express; 2020 Jul; 28(15):22867-22881. PubMed ID: 32752540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation-Induced Instabilities of a Spinor Bose-Einstein Condensate Inside an Optical Cavity.
    Chiacchio EIR; Nunnenkamp A
    Phys Rev Lett; 2019 May; 122(19):193605. PubMed ID: 31144960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.
    Léonard J; Morales A; Zupancic P; Donner T; Esslinger T
    Science; 2017 Dec; 358(6369):1415-1418. PubMed ID: 29242343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom Michelson interferometer on a chip using a Bose-Einstein condensate.
    Wang YJ; Anderson DZ; Bright VM; Cornell EA; Diot Q; Kishimoto T; Prentiss M; Saravanan RA; Segal SR; Wu S
    Phys Rev Lett; 2005 Mar; 94(9):090405. PubMed ID: 15783948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity-mediated strong matter wave bistability in a spin-1 condensate.
    Zhou L; Pu H; Ling HY; Zhang W
    Phys Rev Lett; 2009 Oct; 103(16):160403. PubMed ID: 19905675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter.
    Poli N; Wang FY; Tarallo MG; Alberti A; Prevedelli M; Tino GM
    Phys Rev Lett; 2011 Jan; 106(3):038501. PubMed ID: 21405305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity.
    Nagy D; Kónya G; Szirmai G; Domokos P
    Phys Rev Lett; 2010 Apr; 104(13):130401. PubMed ID: 20481867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.